Introduction 0000	Algorithm 000000	Computation 0000000000	Complexity 0000000	QP 00000000	SDP 0000	MP + DL 0000000	Discussion 0
	GPU-	Accelerate	ed Linea	r Progra	mmin	g and	

GPU-Accelerated Linear Programming and Beyond

Haihao Lu

MIT

MIP Workshop, University of Minnesota

June, 2025

1

Introduction

orithm

Comple 00000

QP 00000 00 SDP

MP + DL 0000000 Discussion 0

2

Jinwen Yang

Zedong Peng

Acknowledgment of my early collaboration with Google

Mostly based on a series of papers:

- H Lu, J Yang (2023a) "cuPDLP.jl: A GPU Implementation of Restarted Primal-Dual Hybrid Gradient for Linear Programming in Julia".
- H Lu, J Yang (2023b) "A Practical and Optimal First-Order Method for Large-Scale Convex Quadratic Programming".
- H Lu, J Yang (2023c) "On the Geometry and Refined Rate of Primal-Dual Hybrid Gradient for Linear Programming".
- H Lu, J Yang (2023d) "On a unified and simplified proof for the ergodic convergence rates of PPM, PDHG and ADMM".
- H Lu, J Yang (2024) "Restarted Halpern PDHG for Linear Programming".
- H Lu, Z Peng, J Yang (2024) "MPAX: Mathematical programming in JAX".

Machine learning infrastructure has grown like crazy in the last 10 years

- Hardware: GPUs and TPUs
- Software: first-order method, Tensorflow and PyTorch

1.76 trillion parameters

Machine learning infrastructure has grown like crazy in the last 10 years

- Hardware: GPUs and TPUs
- Software: first-order method, Tensorflow and PyTorch

1.76 trillion parameters

The scale of mathematical programming we can handle is arguably stuck

- Hardware: shared memory CPU
- Software: simplex/barrier method, Gurobi

Ways to speedup solution time for	Ask Question
a large LP (>10 million decision	
variables)	
Asked 3 years, 9 months ago Modified 3 years, 9 months ago Vie	wed 892 times
 I have a large LP with more than 18 million decision and nearly the same number of constraints. I use CPL 1 the LP but it takes ~28 hours to solve, and that's on server of our institution. 	t variables EX to solve the best

Machine learning infrastructure has grown like crazy in the last 10 years

- Hardware: GPUs and TPUs
- Software: first-order method, Tensorflow and PyTorch

1.76 trillion parameters

The scale of mathematical programming we can handle is arguably stuck

- Hardware: shared memory CPU
- Software: simplex/barrier method, Gurobi

Motivation: Can we use GPU and FOMs to speed and scale up mathematical programming?

- CPU commonly has two to 64 cores, while GPU commonly has thousands or more cores
- CPU is better at serial tasks, and GPU is better at parallel tasks

For large-scale mathematical programming problems:

	Sparse linear system solve	Sparse matrix-vector multiplication
CPU	$\textcircled{\bullet}$	
GPU		$\overline{}$
Methods	Active-set / IPMs	FOMs

- Traditionally, it was believed that GPU is not suitable for solving sparse linear systems.
- NVIDIA released cuDSS, which makes sparse solving possible on GPUs, but the speedup is not the scale of SpMV.

Introduction	Algorithm	Computation	Complexity	QP	SDP	MP + DL	Discussion
0000	●00000	0000000000	0000000	00000000	0000	0000000	0

Algorithm and Implementation

LP (in standard form):

 $\min c^{\top} x$ s.t. $Ax = b, x \ge 0$

LP (primal-dual form):

$$\min_{x \ge 0} \max_{y} c^{\top} x + y^{\top} b - y^{\top} A x$$

Primal-Dual Hybrid Gradient (PDHG) [Chambolle and Pock 2011]

$$x^{k+1} = \operatorname{proj}_{R_{+}^{n}}(x^{k} + \eta(A^{\top}y - c))$$

$$y^{k+1} = y^{k} - \tau(A(2x^{k+1} - x^{k}) - b)$$

- η and τ are the primal and dual step-size, respectively
- Cost per iteration is matrix vector multiplication

 PDHG iterates restricted in the primal (or dual) space look mysterious

- PDHG iterates, in the primal-dual space, follow with "spiral rays", till the active basis changes
- The spiral improves feasibility, and the ray improves the primal-dual gap

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion PDLP(=Primal Dual Algorithms for LP)

On a benchmark set with 383 instances and 1 hour time limit

Method	Solved to 10^{-4} (rela. err.)	Solved to 10^{-8} (rela. err.)
PDHG (CPU)	40%	19%
PDLP (CPU)	97%	85%

Indeed PDHG itself does not work well. We propose many enhancements

- Adaptive step sizes
- Diagonal preconditioning
- Infeasibility detection
- Primal weight updates
- Halpern iteration
- Reflection
- Restarts
- Feasibility polishing

cuPDLP (\approx GPU-version of PDLP)

- Avoid all serial steps of PDLP
- All major steps are done on GPU
- Only two rounds of CPU-GPU communication

Recently, we propose r^2HPDLP (restarted reflected Halpern version of PDLP) with better theory and practice

Computation

Mostly based on

- H Lu, J Yang (2023a) "cuPDLP.jl: A GPU Implementation of Restarted Primal-Dual Hybrid Gradient for Linear Programming in Julia".
- H Lu, J Yang (2024) "Restarted Halpern PDHG for Linear Programming".

Major Message:

- $\bullet\,$ cuPDLP (GPU) is "on par" with state-of-the-art LP solvers
- $\bullet\ \mathrm{r}^2 \mathrm{HPDLP}$ overall has superior performance than cuPDLP

• MIPLIB Relaxations (383 instances)

	Small	Medium	Large
Number of nonzeros	100K - 1M	1M - 10M	>10M
Number of instances	269	94	20

Table: Scales of instances in MIPLIB Relaxations

- Experiment details
 - Gurobi runs on CPU with 16 cores and 160GB of memory, crossover disabled
 - $\bullet~\mbox{cuPDLP.jl/}r^2\mbox{HPDLP}$ runs on H100 GPU with 80GB memory

Introduction	Algorithm	Computation	Complexity	QP	SDP	MP + DL	Discussion
0000	000000	0000000000		00000000	0000	0000000	O
cuPDL	P/r^2HP	DLP vers	us Guro	bi, withc	out pr	esolve	

	Small (269)		Medium (94)		Large (20)	
	(1-hour limit)		(1-hour limit)		(5-hour limit)	
	Count	Time	Count	Time	Count	Time
Primal simplex (Gurobi)	268	7.81	73	140.18	13	1180.42
Dual simplex (Gurobi)	267	5.75	87	45.49	13	973.96
Barrier (Gurobi)	268	2.91	86	37.95	13	576.57
cuPDLP	266	8.61	92	14.80	19	111.19
r ² HPDHG	267	6.61	93	7.84	19	90.81

Table: Moderate accuracy Tol 10^{-4}

	Small (269)		Medium (94)		Large (20)	
	(1-hour limit)		(1-hour limit)		(5-hour limit)	
	Count	Time	Count	Time	Count	Time
Primal simplex (Gurobi)	266	9.06	68	166.03	12	1578.04
Dual simplex (Gurobi)	265	7.14	84	60.97	11	1438.33
Barrier (Gurobi)	268	3.38	82	46.13	13	630.21
cuPDLP	261	23.47	86	40.69	16	421.40
r ² HPDHG	260	19.13	87	28.35	16	229.47

Table: High accuracy Tol 10⁻⁸

Introduction	Algorithm	Computation	Complexity	QP	SDP	MP + DL	Discussion
0000	000000	0000●00000	0000000	00000000	0000	0000000	O
cuPDLF	P/r^2HP	DLP versi	us Gurol	bi, with	preso	lve	

	Small (269)		Medium (94)		Large (20)	
	(1-hour	r limit)	(1-hou	r limit)	(5-hour limit)	
	Count	Time	Count	Time	Count	Time
Primal simplex (Gurobi)	269	5.67	71	121.23	19	297.59
Dual simplex (Gurobi)	268	4.17	86	37.56	19	179.49
Barrier (Gurobi)	269	1.21	94	15.32	20	30.70
cuPDLP	269	5.35	93	10.31	19	33.93
r ² HPDHG	267	3.95	94	6.45	19	17.13

Table: Moderate accuracy Tol 10^{-4}

	Small (269)		Medium (94)		Large (20)	
	(1-hour	limit)	(1-hour limit)		(5-hour limit)	
	Count	Time	Count	Time	Count	Time
Primal simplex (Gurobi)	269	5.19	75	100.03	18	171.72
Dual simplex (Gurobi)	268	3.53	89	27.17	19	121.94
Barrier (Gurobi)	269	1.34	94	16.85	20	33.48
cuPDLP	264	17.53	90	30.05	19	81.07
r ² HPDHG	261	15.24	90	21.67	19	56.19

Table: High accuracy Tol 10⁻⁸

Introduction	Algorithm	Computation	Complexity	QP	SDP	MP + DL	Discussion
0000	000000	0000000000	0000000	00000000	0000	0000000	0
	o versus		/IPI IB				

	Small (269) (1-hour limit)		Medium (94) (1-hour limit)		Large (20) (5-hour limit)	
	Count Time		Count Time		Count	Time
FirstOrderLp.jl	253	35.94	82	155.67	12	2002.21
PDLP (1 thread)	256	22.69	85	98.38	15	1622.91
PDLP (4 threads)	260	24.03	91	42.94	15	736.20
PDLP (16 threads)	238	104.72	84	142.79	15	946.24
cuPDLP	266	8.61	92	14.80	19	111.19
r ² HPDHG	267	6.61	93	7.84	19	90.81

Table: Moderate accuracy Tol 10^{-4}

	Small (269)		Mediu	Medium (94)		Large (20)	
	(1-hour limit)		(1-hour limit)		(5-hour limit)		
	Count Time		Count	Time	Count	Time	
FirstOrderLp.jl	235	91.14	68	389.34	9	3552.50	
PDLP (1 thread)	250	49.31	73	259.04	12	3818.42	
PDLP (4 threads)	245	54.19	81	136.16	14	1789.54	
PDLP (16 threads)	214	248.34	69	403.17	14	2475.57	
cuPDLP	261	23.47	86	40.69	16	421.40	
r ² HPDHG	260	19.13	87	28.35	16	229.47	

Table: High accuracy Tol 10⁻⁸

Figure: LPopt Benchmark (find optimal basic solution)

On the ZIB03 instance

Solver	Hardware	Time to Optimality
Barrier Method (2009)	CPU	4 months
COPT (2023)	Modern CPU	16 hours
cuPDLP–C (2023)	NVIDIA H100 GPU	15 minutes

Table: Hard LP instances solved more than 60 times faster with cuPDLP-C.

 Introduction
 Algorithm
 Computation
 Complexity
 QP
 SDP
 MP + DL
 Discussion

 Performance on large unit commitment instances (By ZIB)
 Operation
 Operation

Test Set	Tolerance		PDLP	IPM		
		Avg (s)	Geo mean (s)	Avg (s)	Geo mean (s)	
V Small	1e-4	13.12	13.10	30.27	29.87	
A-Sman	1e-6	25.59	22.66	33.20	32.55	
G11	1e-4	9.7	9.18	73.16	72.34	
Small	1e-6	30.68	26.14	89.19	86.74	
Madimu	1e-4	104.44	104.21	1035.30	1002.34	
Medium	1e-6	188.24	166.94	1283.83	1217.09	
Langa	1e-4	413.63	394.82	4447.56	4354.79	
Large	1e-6	2145.26	1672.49	7014.48	6894.15	
V. Lange	1e-4	151.867	148.0	11391.09	11296.42	
A-Large	1e-6	633.62	553.20	15405.88	15193.82	
XX Lange	1e-4	480.78	437.52	TIMEOUT	TIMEOUT	
AA-Large	1e-6	3268.83	2181.21	TIMEOUT	TIMEOUT	

Table 4: Performance comparison of PDLP and IPM solver across different test sets and tolerances.

Introduction	Algorithm	Computation	Complexity	QP	SDP	MP + DL	Discussion
0000	000000	0000000000	●000000	00000000	0000	0000000	O

Complexity theory

Mostly based on

• H Lu, J Yang (2024) "Restarted Halpern PDHG for Linear Programming".

Denote

$$\mathcal{K} = \begin{pmatrix} A & 0 \\ -A & 0 \\ 0 & -A^{\top} \\ -c^{\top} & b^{\top} \end{pmatrix} \quad \text{and} \quad h = \begin{pmatrix} b \\ -b \\ -c \\ 0 \end{pmatrix}$$

Then $Kz \ge h$ is the KKT system of LP and solutions $Z^* = \{z \mid Kz \ge h\}$

Progress metric: KKT residual of standard LP

$$\operatorname{KKT}(z) = \|(h - Kz)^+\| = \left\| \begin{pmatrix} Ax - b \\ (A^\top y - c)^+ \\ (c^\top x - b^\top y)^+ \end{pmatrix} \right\|$$

•
$$z = (x, y)$$
 with $x \ge 0$

Traditional convergence results for PDHG on LP are mostly sublinear

• PDHG finds a solution z s.t. $KKT(z) \le \epsilon$ within $O(1/\epsilon)$ iterations

Many LP users require high accuracy solutions

• We need linearly convergent algorithms

Definition: Sharpness of the KKT System

 α is the sharpness constant of the KKT system, if for any $z = (x, y), x \ge 0$,

$$lpha$$
dist $(z,Z^*) \leq \|(h-\mathit{K}z)^+\|$.

Definition: Sharpness of the KKT System

 α is the sharpness constant of the KKT system, if for any $z = (x, y), x \ge 0$,

 $lpha \operatorname{dist}(z, Z^*) \leq \|(h - Kz)^+\|$.

Theorem (informal) [Lu-Yang, 2022]: Linear convergence of PDHG

Consider LP in primal-dual form: $\min_{x\geq 0} \max_{y} c^{\top}x + y^{\top}b - y^{\top}Ax$. Then PDHG finds a solution *z* such that KKT(*z*) $\leq \epsilon$ within

$$O\left(\left(\frac{\|A\|}{lpha}
ight)^2\log\left(rac{1}{\epsilon}
ight)
ight)$$

iterations.

Halpern PDHG (HPDHG)

$$z^{t+1} \leftarrow rac{t+1}{t+2} ext{PDHG}(z^t) + rac{1}{t+2} z^0$$

Halpern PDHG (HPDHG)

$$z^{t+1} \leftarrow \frac{t+1}{t+2} \operatorname{PDHG}(z^t) + \frac{1}{t+2} z^0$$

 $z^0 \bullet$

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion Consolete Cons

Halpern PDHG (HPDHG)

$$z^{t+1} \leftarrow rac{t+1}{t+2} ext{PDHG}(z^t) + rac{1}{t+2} z^0$$

 $z^0 \bullet$

• PDHG (z^0)

$$z^{t+1} \leftarrow rac{t+1}{t+2} ext{PDHG}(z^t) + rac{1}{t+2} z^0$$

Complexity 00000000 Halpern PDHG (HPDHG)

• PDHG(z^2)

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion Concerned to the second seco

Complexity

Reflected Halpern PDHG

$$z^{k+1} = \frac{k+1}{k+2} (2\text{PDHG}(z^k) - z^k) + \frac{1}{k+2} z^0$$

- Take a more aggresive step
- Improve a factor of 2 theoretically

Complexity

Reflected Halpern PDHG

-_ k 🖕

$$z^{k+1} = \frac{k+1}{k+2} (2\text{PDHG}(z^k) - z^k) + \frac{1}{k+2} z^0$$

• Take a more aggresive step

• Improve a factor of 2 theoretically

 $z^0 \bullet$

Complexity

Reflected Halpern PDHG

$$z^{k+1} = \frac{k+1}{k+2} (2\text{PDHG}(z^k) - z^k) + \frac{1}{k+2} z^0$$

• Take a more aggresive step

• Improve a factor of 2 theoretically

 $z^0 \bullet$

PDHG(z^k)

Complexity

Reflected Halpern PDHG

$$z^{k+1} = \frac{k+1}{k+2} (2\text{PDHG}(z^k) - z^k) + \frac{1}{k+2} z^0$$

• Take a more aggresive step

Improve a factor of 2 theoretically

7⁰ •

 $z^{k} \cdot PDHG(z^{k})$ $2PDHG(z^{k})-z^{k}$

Complexity

Reflected Halpern PDHG

$$z^{k+1} = \frac{k+1}{k+2} (2\text{PDHG}(z^k) - z^k) + \frac{1}{k+2} z^0$$

• Take a more aggresive step

• Improve a factor of 2 theoretically

Introduction	Algorithm	Computation	Complexity	QP	SDP	MP + DL	Discussion
0000	000000	0000000000	0000000	•0000000	0000	0000000	0

Quadratic Programming

Mostly based on

• H Lu, J Yang (2023b) "A Practical and Optimal First-Order Method for Large-Scale Convex Quadratic Programming".

Quadratic Programming

• QP (primal-dual form):

$$\min_{x} \max_{y \geq 0} L(x,y) := \frac{1}{2} x^\top Q x + c^\top x - y^\top b + y^\top A x$$

QP 0000000

Major Solvers for QP

Solver	Gurobi	MOSEK	SCS/OSQP	PDLP
Method Sim	plex/IPM	IPM	$ADMM^1$	PDHG

• Major algorithms:

- Simplex Methods
- Interior-Point Methods (IPM)
- First-Order Methods (FOM)
 - Alternating Direction Method of Multipliers (ADMM)
 - Primal-Dual Hybrid Gradient (PDHG)

¹Support direct/indirect linear solvers

Quadratic Programming $\min \frac{1}{2}x^{\top}Qx + c^{\top}x$ s.t. $Ax \leq b$

Optimal FOM should combine restart and momentum

Two-Loop Restarted Accelerated PDHG

Algorithm: Restarted Accelerated PDHG

Input: Initial point $(x^{0,0}, y^{0,0})$, parameters $\{(\beta_t, \theta_t, \eta_t, \tau_t)\}$;

repeat

initialize the inner loop. inner loop counter $t \leftarrow 0$; repeat $| x_{md}^{n,t} \leftarrow (1 - \beta_t^{-1}) \bar{x}^{n,t} + \beta_t^{-1} x^{n,t};$

 $\left| \begin{array}{c} y^{n,t+1} \leftarrow \operatorname{Proj}_{\mathbb{R}^{m}_{+}} \left\{ y^{n,t} + \tau_{t} (A(\theta_{t}(x^{n,t} - x^{n,t-1}) + x^{n,t}) - b) \right\}; \\ x^{n,t+1} \leftarrow x^{n,t} - \eta_{t} (Qx^{n,t}_{\mathsf{md}} + c + A^{\top}y^{n,t+1}); \\ \bar{x}^{n,t+1} \leftarrow (1 - \beta_{t}^{-1})\bar{x}^{n,t} + \beta_{t}^{-1}x^{n,t+1}; \\ \bar{y}^{n,t+1} \leftarrow (1 - \beta_{t}^{-1})\bar{y}^{n,t} + \beta_{t}^{-1}y^{n,t+1}; \\ \text{until } \underline{a \text{ restart condition holds}; \\ \text{ restart the outer loop. } (x^{n+1,0}, y^{n+1,0}) \leftarrow (\bar{x}^{n,t}, \bar{y}^{n,t}), \ n \leftarrow n+1; \\ \text{until } (x^{n,0}, y^{n,0}) \underline{converges}; \\ \mathbf{Output:} \ (x^{n,0}, y^{n,0}). \end{array} \right.$

β_t = 1 + t/2 is the momentum parameter, θ_t = t/(t + 1) is the over-relaxation parameter, η_t and τ_t are the primal and dual step-sizes

QP 00000000

• Sublinear rate of accelerated PDHG was studied in [Chen et al., 2014]

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion Numerical Experiment

Solvers:

- PDQP: CPU / GPU, written in Julia
- SCS: CPU-direct / CPU-indirect / GPU, written in C
- OSQP: CPU, written in C

Datasets:

- Convex QP instances from QPLIB (33 "tiny" instances in total)
- 63 synthetic instances generated from the code of OSQP paper

Termination (1h time limit):

- PDQP has a nearly identical termination criteria as SCS
- \bullet OSQP has a much looser criteria by neglecting primal-dual gap and using ℓ_2 norm

Convex QP, Large Instances

• Seven synthetic classes of convex QP problems from OSQP paper

QP 000000000

• Small (300k nnz), medium (3m nnz), large (30m nnz)

	Small (21)		Mediu	Medium (21)		Large (21)		(63)
	\mathbf{Count}	Time	Count	Time	Count	Time	Count	Time
PDQP (GPU)	21	1.20	21	1.94	21	6.13	63	2.92
PDQP (CPU)	21	3.01	21	27.53	18	359.31	60	46.49
SCS (GPU)	21	2.47	21	10.02	21	68.54	63	16.97
SCS (CPU-indirect)	21	9.39	21	81.86	15	700.88	57	98.18
SCS (CPU-direct)	21	1.06	21	10.19	21	133.52	63	21.76
OSQP (CPU)	21	1.11	21	11.80	21	170.71	63	25.24

Table 7: Solve time in seconds and SGM10 of different solvers on instances of with tolerance 10^{-3} .

	Small (21)		Medium (21)		Large (21)		Total (63)	
	Count	Time	Count	Time	Count	Time	Count	Time
PDQP (GPU)	21	2.08	21	3.40	21	12.17	63	5.31
PDQP (CPU)	21	5.55	21	54.18	17	647.42	59	76.89
SCS (GPU)	21	5.69	21	24.38	18	196.75	60	38.14
SCS (CPU-indirect)	21	23.90	20	267.27	12	1593.95	53	237.04
SCS (CPU-direct)	21	3.09	21	30.25	20	395.85	62	49.79
OSQP (CPU)	21	3.31	21	30.70	21	375.24	63	49.32

Table 8: Solve time in seconds and SGM10 of different solvers on instances of with tolerance 10^{-6} .

Convergence Guarantee (Upper Bound)

Theorem (informal) [Lu-Yang, 2023b]: Convergence Rate of Restarted Accelerated PDHG

QP

Consider QP in primal-dual form:

$$\min_{x} \max_{y \ge 0} \mathcal{L}(x,y) := \frac{1}{2} x^\top Q x + c^\top x - y^\top b + y^\top A x \; .$$

Then restarted accelerated PDHG finds a solution z with $dist(z, Z^*) \leq \epsilon$ within

$$O\left(\max\left\{\sqrt{\frac{\|Q\|}{\alpha_{\boldsymbol{\xi}}}}, \frac{\|A\|}{\alpha_{\boldsymbol{\xi}}}\right\}\log\frac{1}{\epsilon}\right)$$

iterations.

 $lpha_{\xi}>0$ is the quadratic growth constant of the smoothed gap in QP

- LP: α_{ξ} recovers the sharpness constant of LP
- Unconstrained QP: α_{ξ} recovers the minimum positive singular value of the quadratic term

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion Convergence Guarantee (Lower Bound) SDP SDP

Restarted accelerated PDHG achieves optimal linear rate under LP and unconstrained QP [Applegate-Hinder-L-Lubin, 2021], [Nesterov, 1983]

Problem:	LP	Unconstrained QP
Upper bound:	$O\left(\frac{\ A\ _2}{lpha}\log \frac{1}{\epsilon}\right)$	$O\left(\sqrt{rac{\ Q\ _2}{\sigma_{\min}^+(Q)}}\lograc{1}{\epsilon} ight)$
Lower bound:	$\Omega\left(rac{\ A\ _2}{lpha}\lograc{1}{\epsilon} ight)$	$\Omega\left(\sqrt{rac{\ Q \ _2}{\sigma_{\min}^+(Q)}}\lograc{1}{\epsilon} ight)$

- α is the sharpness constant of LP
- $\sigma^+_{\min}(Q)$ is the minimum positive singular value of Q

Introduction	Algorithm	Computation	Complexity	QP	SDP	MP + DL	Discussion
0000	000000	0000000000	0000000	00000000	●000	0000000	O

Semidefinite Programming

We are building up a new GPU-based SDP solver

- The methodology is based on an augmented Lagrangian method
- The numerical performance is suprisingly promising (see the next two slides)
- If you have any large-scale SDP problems to be solved, please feel free to contact us!

Introduction	Algorithm	Computation	Complexity	QP	SDP	MP + DL	D
0000	000000	0000000000	0000000	00000000	oo●o	0000000	O
SDP: N	/laxCut						

instance	dimension	time	instance	dimension	time
NACA0015	1039183	11.485	hugetric-0000	00 5824554	77.006
delaunay_n20	1048576	7.333	hugetric-0001	.0 6592765	79.448
kron_g500-logn20	1048576	131.911	italy_osm	6686493	40.709
rgg_n_2_20_s0	1048576	9.888	adaptive	6815744	96.847
belgium_osm	1441295	8.283	hugetric-0002	20 7122792	83.734
delaunay_n21	2097152	15.262	great-britain	Losm 7733822	61.270
kron_g500-logn21	2097152	335.199	delaunay_n23	8388608	67.985
rgg_n_2_21_s0	2097152	21.679	rgg_n_2_23_s0	8388608	164.510
packing-500x100x100-b050	2145852	26.731	germany_osm	11548845	94.783
netherlands_osm	2216688	12.081	asia_osm	11950757	108.128
M6	3501776	46.567	hugetrace-000	12057441	186.480
333SP	3712815	40.248	road_central	14081816	174.989
AS365	3799275	49.985	hugetrace-000	16002413	314.768
venturiLevel3	4026819	41.529	delaunay_n24	16777216	189.024
NLR	4163763	51.739	rgg_n_2_24_s0	16777216	412.733
delaunay_n22	4194304	33.287	hugebubbles-0	00000 18318143	387.761
rgg_n_2_22_s0	4194304	47.507	hugebubbles-0	00010 19458087	280.580
hugetrace-00000	4588484	50.669	hugebubbles-0	00020 21198119	308.113
channel-500x100x100-b050	4802000	80.858	road_usa	23947347	308.473

Table 1: Performance of ALORA on MaxCut instances. Solve time in seconds.

 Introduction
 Algorithm
 Computation
 Complexity
 QP
 SDP
 MP + DL
 Discussion

 SDP:
 matrix completion

	r = 3			r = 5	
n	m	time	n	m	time
10000	828659	0.379	10000	2300917	0.504
20000	1782453	0.726	20000	4952616	0.969
50000	4868248	1.409	50000	13522024	3.025
100000	10361604	2.944	100000	28777073	6.762
200000	21961921	5.511	200000	61013229	14.786
350000	40223331	12.759	350000	111700922	28.282

Table 2: Performance of ALORA on matrix completion with varying r, n, and m. Solve time in seconds.

Introduction	Algorithm	Computation	Complexity	QP	SDP	MP + DL	Discussion
0000	000000	0000000000	0000000	00000000	0000	●000000	0

MPAX: Mathematical Programming in JAX

Mostly based on

- H Lu, Z Peng, J Yang (2024), "MPAX: Mathematical Programming in JAX".
- GitHub Repository: https://github.com/MIT-Lu-Lab/mpax

MPAX (Math Programming in JAX) is a hardware-accelerated, differentiable, batchable, and distributable solver for mathematical programming in JAX:

- Hardware-accelerated: executes on multiple architectures including CPUs, GPUs and TPUs
- **Differentiable**: easily computes derivatives of solutions with respect to inputs through implicit or unrolled differentiation
- Batchable: solves multiple problem instances simultaneously
- **Distributed**: executes distributedly across multiple devices, such as multiple GPUs

Backpropagation

- Rather than the traditional predict-then-optimize paradigm, end-to-end decision making optimizes jointly the prediction and optimization
- This is an actively studied research area [Amos et al., 2017]
- LP layer can serve as loss functions, enforce constraints, make decisions, etc
- Applications in robotics, control, reinforcement learning, video games, Al for science, etc

 $D_{ heta}[z^*(heta)]$

The key is to efficiently compute or approximate $D_{\theta}[z^*(\theta)]$

- Approximated differentiation
 - Smart Predict-then-Optimize loss
 - Perturbed Fenchel-Young loss
- Auto-differentiation
 - The high-level idea is to unroll the PDLP solver and compute the gradient via the chain rule

Task: find the shortest path between the top left and the bottom right vertices given the Warcraft map.

End-to-end predict-then-optimize

- Use the first five layers of ResNet18 to predict the costs for each vertice.
- Solve the LP to find the shortest path.
- Compute the Smart-Predict-then-Optimize+ loss and backpropagate to update the weights.

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion MPAX versus PyEPO (Gurobi) October October

Experiment details

- Training: 10,000 samples, batch size = 70, epochs = 10.
- Gurobi runs on CPU with 16 cores and 256GB of memory.
- PyTorch, FLAX, and MPAX run on A100 GPU with 80GB memory.

Methods	Configurat	Configuration			Training time per epoch				
Methous	comparation		k=12	k=18	k=24	k=30			
		tol=1e-2	17.56	31.86	55	94.39			
	single precision	tol=1e-3	24.83	44.98	78.72	130.8			
FLAX+IMPAX		tol=1e-4	33.37	55.85	99.56	170.76			
	double precision	tol=1e-6	32.07	71.17	127.99	210.44			
		Process=1	178.08	427.27	792.85	1273.24			
	NA 11 1 1 11	Process=4	80.74	226.18	513.78	1034.65			
	ivietnod=automatic	Process=8	40.16	108	245.8	480.1			
PyEPO		Process=16	27.21	70.82	159.25	317.86			
(PyTorch+Gurobi)		Process=1	202.62	474.67	856.1	1383.03			
	Method=barrier	Process=4	85.48	237.69	538.62	1067.9			
	(crossover disabled)	Process=8	42.65	115.89	261.95	506.06			
		Process=16	29.97	77.7	170.05	337.95			

k denotes the number of rows and columns in the map.

• The quality of 10^{-2} accuracy solutions is enough for this application.

cuPDLP demonstrates the power of GPU in solving LPs

- It demonstrates an alternative, not a substitute
- Better tuning and implementation led to 3-4 times further speedup
- Is PDHG/PDLP the first-order method for LP?
 - Unlikely, but it is the best among what we tried
- A paradigm shift from CPU to GPU?
 - Likely, in the next decade

Ο ...

Many future directions to be explored:

- Other optimization problems, SOCP? NLP? MIP?
- Multiple GPUs implementation

Thank you!

Introduction	Algorithm	Computation	Complexity	QP	SDP	MP + DL	Discussion
0000	000000	0000000000	0000000	00000000	0000	0000000	0

Additional Slides

Denote z = (x, y), and $F(z) = [\nabla_x L(x, y), -\nabla_y L(x, y)]$.

Why $2x^{k+1} - x^k$ in PDHG (informal)?

Denote z = (x, y), and $F(z) = [\nabla_x L(x, y), -\nabla_y L(x, y)]$. Then we have

(GDA):
$$z^{k+1} = z^k - \eta F(z^k)$$

(PPM): $z^{k+1} = z^k - \eta F(z^{k+1})$

 Implicit algorithm (PPM) is more stable than explicit algorithm (GDA) due to a high-order effect [L, 2022]

Why $2x^{k+1} - x^k$ in PDHG (informal)?

Denote z = (x, y), and $F(z) = [\nabla_x L(x, y), -\nabla_y L(x, y)]$. Then we have $(\text{GDA}) : z^{k+1} = z^k - \eta F(z^k)$ $(\text{PPM}) : z^{k+1} = z^k - \eta F(z^{k+1})$

• Implicit algorithm (PPM) is more stable than explicit algorithm (GDA) due to a high-order effect [L, 2022]

It turns out we can rewrite the update of PDHG as

$$(PDHG): z^{k+1} = z^k - P^{-1}F(z^{k+1})$$
,

where $P = \begin{bmatrix} \frac{1}{\eta}I & A^T \\ A & \frac{1}{\eta}I \end{bmatrix}$.

• [Lu-Yang, 2023d] presents a unified and simplified convergence analysis of PPM, PDHG and ADMM

Trajectory-based Analysis

Mostly based on

- H Lu, J Yang (2023c) "On the Geometry and Refined Rate of Primal-Dual Hybrid Gradient for Linear Programming".
- H Lu, J Yang (2024a) "Restarted Halpern PDHG for Linear Programming".

- There are two stages of convergence
- Slow initial convergence, then fast linear convergence

Introduction	Algorithm	Computation	Complexity	QP	SDP	MP + DL	Discussion
0000	000000	0000000000	0000000	00000000	0000	0000000	0
Τ Ο.							

Two Questions

- What are the geometric driving forces of the two stages?
- Is it possible to derive a refined convergence complexity?
A Simple yet Representative Example

Consider a class of 2-D dual LP with parameter (κ, δ) : max_y $b^{\top}y$, s.t. $A^{\top}y \leq c$

- κ controls the condition number of the matrix A
- δ controls closeness to degeneracy

A Simple yet Representative Example

- δ small: slow first stage
- κ small: slow second stage

Stage 1: Slow initial convergence

- This is the process to identify active basis set S such that $x_S^* > 0$
- Driving force of this stage is closeness to degeneracy (i.e., δ)

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion What is going on in the two stages? (Informal)

Stage 1: Slow initial convergence

- This is the process to identify active basis set S such that $x_S^* > 0$
- Driving force of this stage is closeness to degeneracy (i.e., δ)

Stage 2: "Fast" eventual convergence

- Once active set is fixed, the dynamic has faster linear convergence
- Driving force of this stage is condition number of matrix A_S (i.e., $||A_S||/\alpha_S$)

Refined Complexity (Informal)

Theorem [Lu-Yang, 2024a]: Two-Stage Convergence of $\rm r^{2}HPDHG$ for LP

Consider $r^{2}HPDHG$ for solving LP, then we have

• (Finite time identification) r²HPDHG will identify the non-degenerate active variables in

$$k \geq K := \mathcal{O}\left(\frac{\|A\|/\alpha_{S}}{\delta}\right)$$

iterations.

Refined Complexity (Informal)

Theorem [Lu-Yang, 2024a]: Two-Stage Convergence of r^2HPDHG for LP

Consider $r^{2}HPDHG$ for solving LP, then we have

• (Finite time identification) $r^2 \rm HPDHG$ will identify the non-degenerate active variables in

$$k \geq K := \mathcal{O}\left(\frac{\|A\|/\alpha_{\mathsf{S}}}{\delta}\right)$$

iterations.

• (Linear convergence after identification) After identification, $r^{2}HPDHG$ will compute a solution z such that $KKT(z) \le \epsilon$ in

$$\mathcal{O}\left(\frac{||A_{\mathcal{S}}||}{\alpha_{\mathcal{S}}}\log\left(\frac{1}{\epsilon}\right)\right)$$

iterations.

Refined Complexity (Informal)

Theorem [Lu-Yang, 2024a]: Two-Stage Convergence of r^2HPDHG for LP

Consider $r^{2}\mathrm{HPDHG}$ for solving LP, then we have

• (Finite time identification) $r^2 \rm HPDHG$ will identify the non-degenerate active variables in

$$k \geq K := \mathcal{O}\left(\frac{\|A\|/\alpha_{S}}{\delta}\right)$$

iterations.

• (Linear convergence after identification) After identification, $r^{2}HPDHG$ will compute a solution z such that $KKT(z) \le \epsilon$ in

$$\mathcal{O}\left(\frac{||A_{\mathcal{S}}||}{\alpha_{\mathcal{S}}}\log\left(\frac{1}{\epsilon}\right)\right)$$

iterations.

 The fundamental difficulty of the analysis comes from "degeneracy" of the LP