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Motivation

Machine learning infrastructure has
grown like crazy in the last 10 years

Hardware: GPUs and TPUs

Software: first-order method,
Tensorflow and PyTorch

The scale of mathematical programming
we can handle is arguably stuck

Hardware: shared memory CPU

Software: simplex/barrier method,
Gurobi

Motivation: Can we use GPU and FOMs to speed and scale up
mathematical programming?
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Comparison of CPU and GPU

CPU commonly has two to 64 cores, while GPU commonly has
thousands or more cores

CPU is better at serial tasks, and GPU is better at parallel tasks
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What numerical operations are GPU good at?

For large-scale mathematical programming problems:

Traditionally, it was believed that GPU is not suitable for solving
sparse linear systems.

NVIDIA released cuDSS, which makes sparse solving possible on
GPUs, but the speedup is not the scale of SpMV.
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Algorithm and Implementation
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Primal-Dual Hybrid Gradient (PDHG)

LP (in standard form):

min c⊤x

s.t.Ax = b, x ≥ 0

LP (primal-dual form):

min
x≥0

max
y

c⊤x + y⊤b − y⊤Ax

Primal-Dual Hybrid Gradient (PDHG) [Chambolle and Pock 2011]

xk+1 = projRn
+
(xk + η(A⊤y − c))

yk+1 = yk − τ(A(2xk+1 − xk)− b)

η and τ are the primal and dual step-size, respectively

Cost per iteration is matrix vector multiplication
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Visualizing PDHG

PDHG iterates restricted in the primal (or dual) space look
mysterious
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Visualizing PDHG

PDHG iterates, in the primal-dual space, follow with “spiral rays”,
till the active basis changes

The spiral improves feasibility, and the ray improves the primal-dual
gap
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PDLP(=Primal Dual Algorithms for LP)

On a benchmark set with 383 instances and 1 hour time limit

Method Solved to 10−4 (rela. err.) Solved to 10−8 (rela. err.)

PDHG (CPU) 40% 19%
PDLP (CPU) 97% 85%

Indeed PDHG itself does not work well. We propose many enhancements

Adaptive step sizes

Diagonal preconditioning

Infeasibility detection

Primal weight updates

Halpern iteration

Reflection

Restarts

Feasibility polishing
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cuPDLP and r2HPDLP

Read

Preconditioning

Return

Restarted PDHG 

Evaluate 
progress metric 

Solution

LP instance

Scaled LP

Solution

CPU

GPU

Infeasibility 
detection 

cuPDLP (≈ GPU-version of PDLP)

Avoid all serial steps of PDLP

All major steps are done on
GPU

Only two rounds of CPU-GPU
communication

Recently, we propose r2HPDLP
(restarted reflected Halpern version
of PDLP) with better theory and
practice
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Computation

Mostly based on

H Lu, J Yang (2023a) “cuPDLP.jl: A GPU Implementation of Restarted
Primal-Dual Hybrid Gradient for Linear Programming in Julia”.

H Lu, J Yang (2024) “Restarted Halpern PDHG for Linear
Programming”.
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Major Message

Major Message:

cuPDLP (GPU) is “on par” with state-of-the-art LP solvers

r2HPDLP overall has superior performance than cuPDLP
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Datasets

MIPLIB Relaxations (383 instances)

Small Medium Large
Number of nonzeros 100K - 1M 1M - 10M >10M
Number of instances 269 94 20

Table: Scales of instances in MIPLIB Relaxations

Experiment details

Gurobi runs on CPU with 16 cores and 160GB of memory,
crossover disabled
cuPDLP.jl/r2HPDLP runs on H100 GPU with 80GB memory
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cuPDLP/r2HPDLP versus Gurobi, without presolve

Small (269)
(1-hour limit)

Medium (94)
(1-hour limit)

Large (20)
(5-hour limit)

Count Time Count Time Count Time
Primal simplex (Gurobi) 268 7.81 73 140.18 13 1180.42
Dual simplex (Gurobi) 267 5.75 87 45.49 13 973.96

Barrier (Gurobi) 268 2.91 86 37.95 13 576.57
cuPDLP 266 8.61 92 14.80 19 111.19
r2HPDHG 267 6.61 93 7.84 19 90.81

Table: Moderate accuracy Tol 10−4

Small (269)
(1-hour limit)

Medium (94)
(1-hour limit)

Large (20)
(5-hour limit)

Count Time Count Time Count Time
Primal simplex (Gurobi) 266 9.06 68 166.03 12 1578.04
Dual simplex (Gurobi) 265 7.14 84 60.97 11 1438.33

Barrier (Gurobi) 268 3.38 82 46.13 13 630.21
cuPDLP 261 23.47 86 40.69 16 421.40
r2HPDHG 260 19.13 87 28.35 16 229.47

Table: High accuracy Tol 10−8
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cuPDLP/r2HPDLP versus Gurobi, with presolve

Small (269)
(1-hour limit)

Medium (94)
(1-hour limit)

Large (20)
(5-hour limit)

Count Time Count Time Count Time
Primal simplex (Gurobi) 269 5.67 71 121.23 19 297.59
Dual simplex (Gurobi) 268 4.17 86 37.56 19 179.49

Barrier (Gurobi) 269 1.21 94 15.32 20 30.70
cuPDLP 269 5.35 93 10.31 19 33.93
r2HPDHG 267 3.95 94 6.45 19 17.13

Table: Moderate accuracy Tol 10−4

Small (269)
(1-hour limit)

Medium (94)
(1-hour limit)

Large (20)
(5-hour limit)

Count Time Count Time Count Time
Primal simplex (Gurobi) 269 5.19 75 100.03 18 171.72
Dual simplex (Gurobi) 268 3.53 89 27.17 19 121.94

Barrier (Gurobi) 269 1.34 94 16.85 20 33.48
cuPDLP 264 17.53 90 30.05 19 81.07
r2HPDHG 261 15.24 90 21.67 19 56.19

Table: High accuracy Tol 10−8
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cuPDLP versus PDLP, MIPLIB

Small (269)
(1-hour limit)

Medium (94)
(1-hour limit)

Large (20)
(5-hour limit)

Count Time Count Time Count Time
FirstOrderLp.jl 253 35.94 82 155.67 12 2002.21

PDLP (1 thread) 256 22.69 85 98.38 15 1622.91
PDLP (4 threads) 260 24.03 91 42.94 15 736.20
PDLP (16 threads) 238 104.72 84 142.79 15 946.24

cuPDLP 266 8.61 92 14.80 19 111.19
r2HPDHG 267 6.61 93 7.84 19 90.81

Table: Moderate accuracy Tol 10−4

Small (269)
(1-hour limit)

Medium (94)
(1-hour limit)

Large (20)
(5-hour limit)

Count Time Count Time Count Time
FirstOrderLp.jl 235 91.14 68 389.34 9 3552.50

PDLP (1 thread) 250 49.31 73 259.04 12 3818.42
PDLP (4 threads) 245 54.19 81 136.16 14 1789.54
PDLP (16 threads) 214 248.34 69 403.17 14 2475.57

cuPDLP 261 23.47 86 40.69 16 421.40
r2HPDHG 260 19.13 87 28.35 16 229.47

Table: High accuracy Tol 10−8
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Broader impact
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Benchmarks for optimization software (By Hans Mittelmann)

Figure: LPfeas Benchmark (find PD feasible point)

Figure: LPopt Benchmark (find optimal basic solution)
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Benchmarks for hard LP instances (By COPT)

On the ZIB03 instance

Solver Hardware Time to Optimality
Barrier Method (2009) CPU 4 months
COPT (2023) Modern CPU 16 hours
cuPDLP–C (2023) NVIDIA H100 GPU 15 minutes

Table: Hard LP instances solved more than 60 times faster with cuPDLP-C.
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Performance on large unit commitment instances (By ZIB)



22

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Complexity theory

Mostly based on

H Lu, J Yang (2024) “Restarted Halpern PDHG for Linear
Programming”.
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KKT system of LP

Denote

K =


A 0
−A 0
0 −A⊤

−c⊤ b⊤

 and h =


b
−b
−c
0


Then Kz ≥ h is the KKT system of LP and solutions Z∗ = {z | Kz ≥ h}

Progress metric: KKT residual of standard LP

KKT(z) = ∥(h − Kz)+∥ =

∥∥∥∥∥∥
 Ax − b

(A⊤y − c)+

(c⊤x − b⊤y)+

∥∥∥∥∥∥
z = (x , y) with x ≥ 0
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Existing Results for PDHG on LP

Traditional convergence results for PDHG on LP are
mostly sublinear

PDHG finds a solution z s.t. KKT(z) ≤ ϵ within
O(1/ϵ) iterations

Many LP users require high accuracy solutions

We need linearly convergent algorithms
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Linear Convergence of PDHG for LP

Definition: Sharpness of the KKT System

α is the sharpness constant of the KKT system, if for any
z = (x , y), x ≥ 0,

αdist(z ,Z∗) ≤ ∥(h − Kz)+∥ .

Theorem (informal) [Lu-Yang, 2022]: Linear convergence of
PDHG

Consider LP in primal-dual form:
minx≥0 maxy c⊤x + y⊤b − y⊤Ax . Then PDHG finds a
solution z such that KKT(z) ≤ ϵ within

O

((
∥A∥
α

)2

log

(
1

ϵ

))
iterations.
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Halpern PDHG (HPDHG)

Halpern PDHG (HPDHG)

z t+1 ← t + 1

t + 2
PDHG(z t) +

1

t + 2
z0

z0

z1

z2

PDHG(z2)

z3
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Restarted Halpern PDHG (rHPDHG)

Restarted Halpern PDHG (rHPDHG)

initialize the inner loop. inner loop counter t ← 0 ;
repeat

zn,t+1 ← t+1
t+2PDHG(zn,t) + 1

t+2z
n,0;

until ∥zn,t+1 − PDHG(zn,t+1)∥ ≤ ∥zn,0 − PDHG(zn,0)∥/2;
restart the outer loop. zn+1,0 ← PDHG(zn,t+1);
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Restarted reflected Halpern PDHG (r2HPDHG)

Reflected Halpern PDHG

zk+1 =
k + 1

k + 2
(2PDHG(zk)− zk) +

1

k + 2
z0

Take a more aggresive step

Improve a factor of 2 theoretically

z0

zk

2PDHG(zk)-zk
zk+1
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Quadratic Programming

Mostly based on

H Lu, J Yang (2023b) “A Practical and Optimal First-Order Method for
Large-Scale Convex Quadratic Programming”.
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Quadratic Programming

QP (primal-dual form):

min
x

max
y≥0

L(x , y) :=
1

2
x⊤Qx + c⊤x − y⊤b + y⊤Ax

Major Solvers for QP

Solver Gurobi MOSEK SCS/OSQP PDLP

Method Simplex/IPM IPM ADMM1 PDHG

Major algorithms:

Simplex Methods

Interior-Point Methods (IPM)
First-Order Methods (FOM)

Alternating Direction Method of Multipliers (ADMM)
Primal-Dual Hybrid Gradient (PDHG)

1Support direct/indirect linear solvers
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Two Extremes of QP

Optimal FOM should combine restart and momentum
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Two Extremes of QP

Optimal FOM should combine restart and momentum
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Two-Loop Restarted Accelerated PDHG

Algorithm: Restarted Accelerated PDHG
Input: Initial point (x0,0, y0,0), parameters {(βt , θt , ηt , τt)};
repeat

initialize the inner loop. inner loop counter t ← 0;
repeat

xn,tmd ← (1− β−1
t )x̄n,t + β−1

t xn,t ;

yn,t+1 ← ProjRm
+

{
yn,t + τt(A(θt(xn,t − xn,t−1) + xn,t)− b)

}
;

xn,t+1 ← xn,t − ηt(Qxn,tmd + c + A⊤yn,t+1);

x̄n,t+1 ← (1− β−1
t )x̄n,t + β−1

t xn,t+1;

ȳn,t+1 ← (1− β−1
t )ȳn,t + β−1

t yn,t+1;

until a restart condition holds;

restart the outer loop. (xn+1,0, yn+1,0)← (x̄n,t , ȳn,t), n← n + 1;

until (xn,0, yn,0) converges;

Output: (xn,0, yn,0).

βt = 1 + t/2 is the momentum parameter, θt = t/(t + 1) is the
over-relaxation parameter, ηt and τt are the primal and dual step-sizes

Sublinear rate of accelerated PDHG was studied in [Chen et al., 2014]
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Numerical Experiment

Solvers:

PDQP: CPU / GPU, written in Julia

SCS: CPU-direct / CPU-indirect / GPU, written in C

OSQP: CPU, written in C

Datasets:

Convex QP instances from QPLIB (33 “tiny” instances in total)

63 synthetic instances generated from the code of OSQP paper

Termination (1h time limit):

PDQP has a nearly identical termination criteria as SCS

OSQP has a much looser criteria by neglecting primal-dual gap and
using ℓ2 norm
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Convex QP, Large Instances

Seven synthetic classes of convex QP problems from OSQP paper

Small (300k nnz), medium (3m nnz), large (30m nnz)
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Convergence Guarantee (Upper Bound)

Theorem (informal) [Lu-Yang, 2023b]: Convergence Rate of Restarted
Accelerated PDHG

Consider QP in primal-dual form:

min
x

max
y≥0

L(x , y) :=
1

2
x⊤Qx + c⊤x − y⊤b + y⊤Ax .

Then restarted accelerated PDHG finds a solution z with dist(z ,Z∗) ≤ ϵ
within

O

(
max

{√
∥Q∥
αξ

,
∥A∥
αξ

}
log

1

ϵ

)
iterations.

αξ > 0 is the quadratic growth constant of the smoothed gap in QP

LP: αξ recovers the sharpness constant of LP

Unconstrained QP: αξ recovers the minimum positive singular value
of the quadratic term
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Convergence Guarantee (Lower Bound)

Restarted accelerated PDHG achieves optimal linear rate under LP and
unconstrained QP [Applegate-Hinder-L-Lubin, 2021], [Nesterov, 1983]

Problem: LP Unconstrained QP

Upper bound: O
(

∥A∥2

α log 1
ϵ

)
O
(√

∥Q∥2

σ+
min(Q)

log 1
ϵ

)
Lower bound: Ω

(
∥A∥2

α log 1
ϵ

)
Ω
(√

∥Q∥2

σ+
min(Q)

log 1
ϵ

)
α is the sharpness constant of LP

σ+
min(Q) is the minimum positive singular value of Q
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Semidefinite Programming
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SDP: MaxCut

We are building up a new GPU-based SDP solver

The methodology is based on an augmented Lagrangian method

The numerical performance is suprisingly promising (see the next
two slides)

If you have any large-scale SDP problems to be solved, please feel
free to contact us!
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SDP: MaxCut
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SDP: matrix completion
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MPAX: Mathematical Programming
in JAX

Mostly based on

H Lu, Z Peng, J Yang (2024), “MPAX: Mathematical Programming in
JAX”.

GitHub Repository: https://github.com/MIT-Lu-Lab/mpax

https://github.com/MIT-Lu-Lab/mpax
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MPAX: Math Programming in JAX

MPAX (Math Programming in JAX) is a hardware-accelerated, differentiable,
batchable, and distributable solver for mathematical programming in JAX:

Hardware-accelerated: executes on multiple architectures including
CPUs, GPUs and TPUs

Differentiable: easily computes derivatives of solutions with respect to
inputs through implicit or unrolled differentiation

Batchable: solves multiple problem instances simultaneously

Distributed: executes distributedly across multiple devices, such as
multiple GPUs
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Example application: end-to-end decision making

Rather than the traditional predict-then-optimize paradigm,
end-to-end decision making optimizes jointly the prediction and
optimization

This is an actively studied research area [Amos et al., 2017]

LP layer can serve as loss functions, enforce constraints, make
decisions, etc

Applications in robotics, control, reinforcement learning, video
games, AI for science, etc
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Differentiable layer

The key is to efficiently compute or approximate Dθ[z
∗(θ)]

Approximated differentiation
Smart Predict-then-Optimize loss
Perturbed Fenchel-Young loss

Auto-differentiation
The high-level idea is to unroll the PDLP solver and compute
the gradient via the chain rule
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Warcraft Shortest Path

Task: find the shortest path between the top left and the bottom right vertices
given the Warcraft map.

0 20 40 60 80
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Map
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Vertex weights

0 2 4 6 8 10
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8

10

Shortest path

End-to-end predict-then-optimize

Use the first five layers of ResNet18 to predict the costs for each vertice.

Solve the LP to find the shortest path.

Compute the Smart-Predict-then-Optimize+ loss and backpropagate to
update the weights.
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MPAX versus PyEPO (Gurobi)

Experiment details

Training: 10,000 samples, batch size = 70, epochs = 10.

Gurobi runs on CPU with 16 cores and 256GB of memory.

PyTorch, FLAX, and MPAX run on A100 GPU with 80GB memory.

Methods Configuration
Training time per epoch

k=12 k=18 k=24 k=30

FLAX+MPAX
single precision

tol=1e-2 17.56 31.86 55 94.39
tol=1e-3 24.83 44.98 78.72 130.8
tol=1e-4 33.37 55.85 99.56 170.76

double precision tol=1e-6 32.07 71.17 127.99 210.44

PyEPO
(PyTorch+Gurobi)

Method=automatic

Process=1 178.08 427.27 792.85 1273.24
Process=4 80.74 226.18 513.78 1034.65
Process=8 40.16 108 245.8 480.1
Process=16 27.21 70.82 159.25 317.86

Method=barrier
(crossover disabled)

Process=1 202.62 474.67 856.1 1383.03
Process=4 85.48 237.69 538.62 1067.9
Process=8 42.65 115.89 261.95 506.06
Process=16 29.97 77.7 170.05 337.95

k denotes the number of rows and columns in the map.
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Training loss with different tolerances
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Training Loss for 12x12 maps
Methods

MPAX (tol=1e-02, single precision)
MPAX (tol=1e-04, single precision)
MPAX (tol=1e-06, double precision)
PyEPO (Barrier without crossover)
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Training Loss for 18x18 maps
Methods

MPAX (tol=1e-02, single precision)
MPAX (tol=1e-04, single precision)
MPAX (tol=1e-06, double precision)
PyEPO (Barrier without crossover)
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Training Loss for 24x24 maps
Methods

MPAX (tol=1e-02, single precision)
MPAX (tol=1e-04, single precision)
MPAX (tol=1e-06, double precision)
PyEPO (Barrier without crossover)
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Training Loss for 30x30 maps
Methods

MPAX (tol=1e-02, single precision)
MPAX (tol=1e-04, single precision)
MPAX (tol=1e-06, double precision)
PyEPO (Barrier without crossover)

The quality of 10−2 accuracy solutions is enough for this application.
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Discussions

cuPDLP demonstrates the power of GPU in solving LPs

It demonstrates an alternative, not a substitute

Better tuning and implementation led to 3-4 times further speedup

Is PDHG/PDLP the first-order method for LP?

Unlikely, but it is the best among what we tried

A paradigm shift from CPU to GPU?

Likely, in the next decade

Many future directions to be explored:

Other optimization problems, SOCP? NLP? MIP?

Multiple GPUs implementation

...

Thank you!
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Additional Slides
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Why 2xk+1 − xk in PDHG (informal)?

Denote z = (x , y), and F (z) = [∇xL(x , y),−∇yL(x , y)].

Then we have

(GDA) : zk+1 = zk − ηF (zk)

(PPM) : zk+1 = zk − ηF (zk+1)

Implicit algorithm (PPM) is more stable than explicit algorithm
(GDA) due to a high-order effect [L, 2022]

It turns out we can rewrite the update of PDHG as

(PDHG) : zk+1 = zk − P−1F (zk+1) ,

where P =

[
1
η I AT

A 1
η I

]
.

[Lu-Yang, 2023d] presents a unified and simplified convergence
analysis of PPM, PDHG and ADMM
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Trajectory-based Analysis

Mostly based on

H Lu, J Yang (2023c) “On the Geometry and Refined Rate of
Primal-Dual Hybrid Gradient for Linear Programming”.

H Lu, J Yang (2024a) “Restarted Halpern PDHG for Linear
Programming”.
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Typical Behaviors of PDHG for LP

There are two stages of convergence

Slow initial convergence, then fast linear convergence
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Two Questions

What are the geometric driving forces of the two stages?

Is it possible to derive a refined convergence complexity?



54

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

A Simple yet Representative Example

Consider a class of 2-D dual LP with
parameter (κ, δ): maxy b⊤y , s.t. A⊤y ≤ c

max y2

s.t. y1 ≥ −1
y1 ≤ 1

y1 +
1

κ
y2 ≤ 1

− y1 +
1

κ
y2 ≤ 1

y2 ≤ κ− δ

κ controls the condition number of the
matrix A

δ controls closeness to degeneracy
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A Simple yet Representative Example

δ small: slow first stage

κ small: slow second stage
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What is going on in the two stages? (Informal)

Stage 1: Slow initial convergence

This is the process to identify active basis set S such that x∗S > 0

Driving force of this stage is closeness to degeneracy (i.e., δ)

Stage 2: “Fast” eventual convergence

Once active set is fixed, the dynamic has faster linear convergence

Driving force of this stage is condition number of matrix AS (i.e.,
∥AS∥/αS)

αS ≈ σ+
min(AS)≫ α
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Refined Complexity (Informal)

Theorem [Lu-Yang, 2024a]: Two-Stage Convergence of r2HPDHG for LP

Consider r2HPDHG for solving LP, then we have

(Finite time identification) r2HPDHG will identify the
non-degenerate active variables in

k ≥ K := O
(
∥A∥/αS

δ

)
iterations.

(Linear convergence after identification) After identification,
r2HPDHG will compute a solution z such that KKT(z) ≤ ϵ in

O
(
||AS ||
αS

log

(
1

ϵ

))
.

iterations.

The fundamental difficulty of the analysis comes from “degeneracy”
of the LP
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