GPU-Accelerated Linear Programming and
Beyond

Haihao Lu

MIT

MIP Workshop, University of Minnesota

June, 2025

Introduction

@000

Jinwen Yang

-

-

Zedong Peng

Acknowledgment of my early

collaboration with Google

Mostly based on a series of papers:
@ H Lu, J Yang (2023a) “cuPDLP.jl: A GPU

Implementation of Restarted Primal-Dual Hybrid
Gradient for Linear Programming in Julia”.

H Lu, J Yang (2023b) “A Practical and Optimal
First-Order Method for Large-Scale Convex Quadratic
Programming”.

H Lu, J Yang (2023c) “On the Geometry and Refined
Rate of Primal-Dual Hybrid Gradient for Linear
Programming”.

H Lu, J Yang (2023d) “On a unified and simplified
proof for the ergodic convergence rates of PPM,
PDHG and ADMM".

H Lu, J Yang (2024) “Restarted Halpern PDHG for
Linear Programming”.

H Lu, Z Peng, J Yang (2024) “MPAX: Mathematical
programming in JAX".

Introduction
[e] lele}

Motivation

Machine learning infrastructure has
grown like crazy in the last 10 years

@ Hardware: GPUs and TPUs

@ Software: first-order method,
Tensorflow and PyTorch

é - -’gle number of parameters in chatgpt 4

1.76 trillion parameters

Introduction
[e] lele}

Motivation

Machine learning infrastructure has
grown like crazy in the last 10 years

@ Hardware: GPUs and TPUs

@ Software: first-order method,
Tensorflow and PyTorch

- —
% number of parameters in chatgpt 4

1.76 trillion parameters

The scale of mathematical programming
we can handle is arguably stuck

@ Hardware: shared memory CPU

@ Software: simplex/barrier method,
Gurobi

Ways to speedup solution time for
alarge LP (>10 million decision
variables)

Asked 3 years, 9months ago Modified 3 years, 9 months ago Viewed 892 times

I'have a large LP with more than 10 million decision variables
and nearly the same number of constraints. | use CPLEX to solve
1 the LP but it takes ~20 hours to solve, and that's on the best
server of our institution.

Introduction
[e] lele}

Motivation

Machine learning infrastructure has The scale of mathematical programming
grown like crazy in the last 10 years ~ we can handle is arguably stuck

@ Hardware: GPUs and TPUs @ Hardware: shared memory CPU
@ Software: first-order method, @ Software: simplex/barrier method,
Tensorflow and PyTorch Gurobi

Ways to speedup solution time for
alarge LP (>10 million decision

\ — .
- variables)
- -’g[e number of parameters in chatgpt 4

Asked 3 years, 9months ago Modified 3 years, 9 months ago Viewed 892 times

1.76 trillion parameters a |havealarge LP with more than 10 million decision variables
and nearly the same number of constraints. | use CPLEX to solve
1 the LP but it takes ~20 hours to solve, and that's on the best
server of our institution.

Motivation: Can we use GPU and FOMs to speed and scale up
mathematical programming?

Introduction
[e]e] e}

Comparison of CPU and GPU

O O

Core Control Memory
Unit

@ CPU commonly has two to 64 cores, while GPU commonly has
thousands or more cores

@ CPU is better at serial tasks, and GPU is better at parallel tasks

Introduction
[e]e]e]]

What numerical operations are GPU good at?

For large-scale mathematical programming problems:

Sparse linear system Sparse matrix-vector
solve multiplication

CPU
GPU . .

Methods Active-set / IPMs FOMs

@ Traditionally, it was believed that GPU is not suitable for solving
sparse linear systems.

@ NVIDIA released cuDSS, which makes sparse solving possible on
GPUs, but the speedup is not the scale of SpMV.

Algorithm
00000

Algorithm and Implementation

Algorithm
0e0000

Primal-Dual Hybrid Gradient (PDHG)

LP (in standard form):
min ¢ ' x

stAx=b,x>0
LP (primal-dual form):

minmax ¢' x+y' b—y ' Ax
x>0 y

Primal-Dual Hybrid Gradient (PDHG) [Chambolle and Pock 2011]
X = projgy (x* +n(A'y — ¢))

yk+1 — yk _ T(A(2Xk+1 o Xk) _ b)

@ 7 and 7 are the primal and dual step-size, respectively

@ Cost per iteration is matrix vector multiplication

Algorithm
00e000

Visualizing PDHG

— nholytope
=@= simplex
=== central path
IPM
—=— PDHG
@ optimal set

@ PDHG iterates restricted in the primal (or dual) space look
mysterious

Algorithm
[e]e]e] lele)

Visualizing PDHG

—— Phase 1
v—=—Phase 2
Phase 3
—— Phase 4
2

« optimal set 25 g.\\

b
1 A
\ 15 1}
5 } 1
N ? v oy X
%
5 f 0
yI1] P / °
o° — Vi 2
1 A
° 0 x[2] ¢ N
Qo
o NS
‘ 8
L o5 1) v
~ 10 \ °
x[2] - 1 o
o
x[1]

@ PDHG iterates, in the primal-dual space, follow with “spiral rays”,
till the active basis changes

@ The spiral improves feasibility, and the ray improves the primal-dual
gap

Algorithm
0000e0

PDLP(=Primal Dual Algorithms for LP)

On a benchmark set with 383 instances and 1 hour time limit

Method Solved to 10=* (rela. err.) Solved to 1072 (rela. err.)
PDHG (CPU) 40% 19%
PDLP (CPU) 97% 85%

Indeed PDHG itself does not work well. We propose many enhancements
@ Adaptive step sizes

Diagonal preconditioning

Infeasibility detection

Primal weight updates

Halpern iteration

Reflection

Restarts

Feasibility polishing 10

Algorithm
[e]e]e]e]e])

cuPDLP and r*HPDLP

cru cuPDLP (a GPU-version of PDLP)

@ GPU
R @ Avoid all serial steps of PDLP
*” . Scaled LP .
1 @ All major steps are done on
Restarted PDHG G P U
Inf:asibmw @ Only two rounds of CPU-GPU
"j'“"“ communication

Evaluate
progress metric

Recently, we propose r>’HPDLP
Return

Solution (restarted reflected Halpern version
I of PDLP) with better theory and

practice

11

Computation

9000000000

Computation

Mostly based on

@ H Lu, J Yang (2023a) “cuPDLP.jl: A GPU Implementation of Restarted
Primal-Dual Hybrid Gradient for Linear Programming in Julia”.

@ H Lu, J Yang (2024) “Restarted Halpern PDHG for Linear
Programming”.

12

Computation
0@00000000

Major Message

Major Message:
e cuPDLP (GPU) is “on par” with state-of-the-art LP solvers

o r?HPDLP overall has superior performance than cuPDLP

13

Computation
00e0000000

Datasets

@ MIPLIB Relaxations (383 instances)

Small Medium Large
Number of nonzeros 100K -1M 1M -10M >10M
Number of instances 269 94 20

Table: Scales of instances in MIPLIB Relaxations

@ Experiment details

o Gurobi runs on CPU with 16 cores and 160GB of memory,
crossover disabled
o cuPDLP.jl/r?HPDLP runs on H100 GPU with 80GB memory

14

Computation
[e]e]e] lelelele]ele]

cuPDLP/rQHPDLP versus Gurobi, without presolve

Small (269) Medium (94) Large (20)
(1-hour limit) (1-hour limit) (5-hour limit)
Count Time Count Time Count Time
Primal simplex (Gurobi) 268 7.81 73 140.18 13 1180.42
Dual simplex (Gurobi) 267 5.75 87 45.49 13 973.96

Barrier (Gurobi) 268 291 86 37.95 13 576.57
cuPDLP 266 8.61 92 14.80 19 111.19
r’HPDHG 267 6.61 93 7.84 19 90.81

Table: Moderate accuracy Tol 10~

Small (269) Medium (94) Large (20)
(1-hour limit) (1-hour limit) (5-hour limit)
Count Time Count Time Count Time
Primal simplex (Gurobi) 266 9.06 68 166.03 12 1578.04
Dual simplex (Gurobi) 265 7.14 84 60.97 11 1438.33

Barrier (Gurobi) 268 3.38 82 46.13 13 630.21
cuPDLP 261 23.47 86 40.69 16 421.40
r’HPDHG 260 19.13 87 28.35 16 229.47

Table: High accuracy Tol 10~8 15

Computation
[e]e]ele] lelelelele]

cuPDLP/rQHPDLP versus Gurobi, with presolve

Small (269) Medium (94) Large (20)
(1-hour limit) (1-hour limit) (5-hour limit)
Count Time Count Time Count Time
Primal simplex (Gurobi) 269 5.67 71 121.23 19 297.59
Dual simplex (Gurobi) 268 4.17 86 37.56 19 179.49

Barrier (Gurobi) 269 1.21 94 15.32 20 30.70
cuPDLP 269 5.35 93 10.31 19 33.93
r’HPDHG 267 3.95 94 6.45 19 17.13

Table: Moderate accuracy Tol 10~*

Small (269) Medium (94) Large (20)
(1-hour limit) (1-hour limit) (5-hour limit)
Count Time Count Time Count Time
Primal simplex (Gurobi) 269 5.19 75 100.03 18 171.72
Dual simplex (Gurobi) 268 3.53 89 27.17 19 121.94

Barrier (Gurobi) 269 1.34 94 16.85 20 33.48
cuPDLP 264 17.53 90 30.05 19 81.07
r?HPDHG 261 15.24 90 21.67 19 56.19

Table: High accuracy Tol 10~8 L6

Computation
[e]e]ele]e] lelelele]

cuPDLP versus PDLP, MIPLIB

Small (269) Medium (94) Large (20)
(1-hour limit) (1-hour limit) (5-hour limit)
Count Time Count Time Count Time
FirstOrderLp.jl 253 35.94 82 155.67 12 2002.21

PDLP (1 thread) 256 22.69 85 98.38 15 1622.91

PDLP (4 threads) 260 24.03 91 42.94 15 736.20

PDLP (16 threads) 238 104.72 84 142.79 15 946.24
cuPDLP 266 8.61 92 14.80 19 111.19
?HPDHG 267 6.61 93 7.84 19 90.81

Table: Moderate accuracy Tol 10~#

Small (269) Medium (94) Large (20)
(1-hour limit) (1-hour limit) (5-hour limit)
Count Time Count Time Count Time
FirstOrderLp.jl 235 91.14 68 389.34 9 3552.50

PDLP (1 thread) 250 4931 73 25004 12 3818.42
PDLP (4 threads) 245 54.19 81 13616 14 1789.54
PDLP (16 threads) 214 24834 69 403.17 14 247557
cuPDLP 261 23.47 86 40.69 16 421.40
r2HPDHG 260 19.13 87 28.35 16 220.47

Table: High accuracy Tol 10~8 17

Computation
000000 e000

Broader impact

e’ CUPDLP
[L-Yang, 2023]
<A NVIDIA. FICO
June, 2021 February, 2024 Mqrch 2024 October, 2024
November, 202 March, 2024 April, 2024
~ GUROBI
a PDLP @golnﬁ;[G S OPTIMIZATION
HiGH

18

Computation
0000000800

Benchmarks for optimization software (By Hans Mittelmann)

65 probs 1 712 3.29 25.0 21.6 16.7 5.77 1.54 2.30 2.36
solved 65 36 59 48 49 50 59 65| 57 56
probs COPT TULIP MOSEK HiGHS KNITRO PDLP% XOPT OPTV |CUPDL) CUOPT}

Figure: LPfeas Benchmark (find PD feasible point)

65 probs 27.2 1 1.68 7.45 17.0 59.4 93.5 6.60 1.84
solved 40 65 63 52 51 33 32 52 57

probs CLP COPT OPTV MOSEK HiGHS GLOP SPLX XOPT |CUPDL

Figure: LPopt Benchmark (find optimal basic solution)
19

Computation
0000000080

Benchmarks for hard LP instances (By copT)

On the ZIB03 instance

Solver Hardware Time to Optimality
Barrier Method (2009) | CPU 4 months

COPT (2023) Modern CPU 16 hours

cuPDLP-C (2023) NVIDIA H100 GPU | 15 minutes

Table: Hard LP instances solved more than 60 times faster with cuPDLP-C.

20

Computation
00000000 0e

Performance on large unit commitment instances (By ZIB)

Test Set Tolerance | PDLP | IPM
[Avg (s) Geo mean (s) | Avg (s) Geo mean (s)
X-Small le-4 13.12 13.10 30.27 29.87
le-6 25.59 22.66 33.20 32.55
Small le-4 9.7 9.18 73.16 72.34
m le-6 30.68 26.14 89.19 86.74
Medi le-4 104.44 104.21 1035.30 1002.34
edium le-6 188.24 166.94 1283.83 1217.09
Large le-4 413.63 394.82 4447.56 4354.79
S le-6 2145.26 1672.49 7014.48 6894.15
X-Large le-4 151.867 148.0 11391.09 11296.42
g le-6 633.62 553.20 15405.88 15193.82
XX-Large le-4 480.78 437.52 TIMEOUT TIMEOUT
& le-6 3268.83 2181.21 TIMEOUT TIMEOUT

Table 4: Performance comparison of PDLP and IPM solver across different test
sets and tolerances.

21

Complexity
000000

Complexity theory

Mostly based on

@ H Lu, J Yang (2024) “Restarted Halpern PDHG for Linear
Programming”.

22

Complexity
0000000

KKT system of LP

Denote
A 0 b
—A 0 —b
K= 0 AT and h= e
—ct b7 0

Then Kz > h is the KKT system of LP and solutions Z* = {z | Kz > h}

Progress metric: KKT residual of standard LP

Ax —b
KKT(2) = |(h— Ke)']| = (ATy~ o))
(c"x—bTy)*

@ z=(x,y) with x>0

23

Complexity
[e]e] lelelele]

Existing Results for PDHG on LP

PDHG

o(2)

[
pvd

——— [Iraditional convergence results for PDHG on LP are
PDHG + sharp

mostly sublinear

A1) jog 1
O((T) log E) @ PDHG finds a solution z s.t. KKT(z) < € within
\T/ O(1/¢) iterations

rHPDHG

0] (H log l)
@ € @ We need linearly convergent algorithms

O

r’HPDHG

Many LP users require high accuracy solutions

A factor of 2
N— 24

Complexity

[e]o]e] le]ele)

Linear Convergence of PDHG for LP

PDHG
ol

€

« is the sharpness constant of the KKT system, if for any
igs z=(x,y),x >0,

T
PRHG * sharp adist(z, Z*) < ||(h — K2)*| .
0 ((M) Iogl>

7

U

(o~)
rHPDHG

o (”ai” log %)
——

U

r’HPDHG

) Definition: Sharpness of the KKT System

A factor of 2
—— 25

Complexity

[e]o]e] le]ele)

Linear Convergence of PDHG for LP

PDHG —
1Al Definition: Sharpness of the KKT System
0 (T) « is the sharpness constant of the KKT system, if for any

iyt z=(x,y),x >0,

o)
PDHG + sharp adist(z, Z*) < ||[(h— Kz)™]| .

o((#)':)

Theorem (informal) [Lu-Yang, 2022]: Linear convergence of

L PDHG
T —
rHPDHG Consider LP in primal-dual form:
0 (H o l> min,>o max, cx —|—yTb — yTAX. Then PDHG finds a
a %8¢) | solution z such that KKT(z) < e within
——
2
o 5 ((HAH> jog (1))
() a €
r’HPDHG

A factor of 2 iterations. |
— 25

Complexity
[e]e]e]e] Tele]

Halpern PDHG (HPDHG)

PDHG
0 (M) Halpern PDHG (HPDHG)
€
— t+1
iyt Zh %PDHG(zt) o 57"
R
PDHG + sharp

o (14)"wn?)

U

(erne)
rHPDHG

0 <@Iog %)
—

U

r’HPDHG

A factor of 2
—— 26

Complexity
[e]e]e]e] Tele]

Halpern PDHG (HPDHG)

PDHG
0 <||A||) Halpern PDHG (HPDHG)

€
—— t+1

t+1 " “"PDH t
iy} A G(z") +

(o .
PDHG + sharp

0 (121)"wg?)

U

(erne)
rHPDHG

0 <@Iog %)
—

U

r’HPDHG

0
z
t+2

A factor of 2
—— 26

Complexity
[e]e]e]e] Tele]

Halpern PDHG (HPDHG)

PDHG
0 <||A||) Halpern PDHG (HPDHG)

€
—— t+1

t+1 " “"PDH t
iy} A G(z") +

(o .
PDHG + sharp

o (141" g z0
2 ePDHG(2°)

(erne)
rHPDHG

0 <@Iog %)
—

U

r’HPDHG

0
z
t+2

A factor of 2
—— 26

Complexity
[e]e]e]e] Tele]

Halpern PDHG (HPDHG)

PDHG

o[
s

(o .
PDHG + sharp
2
0 ((@) log %)
— 7/

U

(erne)
rHPDHG

0 <@Iog %)
—

U

r’HPDHG
A factor of 2

——

Halpern PDHG (HPDHG)

t41, tH1 t 0
z <—t+2PDHG(z)+t+22
Zz0e.
“ePDHG(2°)

26

Complexity
[e]e]e]e] Tele]

Halpern PDHG (HPDHG)

PDHG
0 <||A||) Halpern PDHG (HPDHG)

€
—— t+1

t+1 " “"PDH t
iy} A G(z") +

(o .
PDHG + sharp

2 0
o (1A l) z'®
(ST
2
(" omune)
rHPDHG

O<wlogl>
—
O ePDHG(z%)

r’HPDHG

0
z
t+2

A factor of 2
—— 26

Complexity
[e]e]e]e] Tele]

Halpern PDHG (HPDHG)

PDHG
0 <||A||) Halpern PDHG (HPDHG)
€
— t+1
t+1 t
iy A) 2PDHG(Z)+

(o .
PDHG + sharp

o((2)'e!) g

L4
L
N\
rHPDHG

0<wlogl> "",_22
'

O ePDHG(z%)
r’HPDHG

0
z
t+2

A factor of 2
—— 26

Complexity
[e]e]e]e] Tele]

Halpern PDHG (HPDHG)

PDHG
0 <||A||) Halpern PDHG (HPDHG)
€
— t+1
t+1 t
iy A) 2PDHG(Z)+

(o .
PDHG + sharp

2 0
o (1A l) z'®
(ST
2
(" omune)
rHPDHG

0<wlog 1) ¥

—

L
r’HPDHG ePDHG(Z?)

A factor of 2
—— 26

0
z
t+2

Complexity
[e]e]e]e] Tele]

Halpern PDHG (HPDHG)

PDHG
0 <||A||) Halpern PDHG (HPDHG)
€
— t+1
t+1 t
iy A) 2PDHG(Z)+

(o .
PDHG + sharp

0 ((%)Zlogg ZO' .

L4
L
N\
rHPDHG

0] <@ log %) °z2
— ’
L :

r’HPDHG sPDHG(z?)
A factor of 2
— 26

0
z
t+2

sz

Complexity
00000e0

Restarted Halpern PDHG (rHPDHG)
Restarted Halpern PDHG (rHPDHG)

PDHG 2 initialize the inner loop. inner loop counter t < 0 ;

Al repeat
0 (T) | zmt — BIPDHG(z™) + 52
— 7 .

iyt until ||zt — PDHG(z"t1)|| < ||z™° — PDHG(2™9)]|/2;

restart the outer loop. z""10 < PDHG(z"**1);

(oo + o)
PDHG + sharp

2
lIAll 1 .
0 ((& |0g € min , max , ry
——

U y

e)
rHPDHG

0 <H—2U log %) L
@ -0.2

r’HPDHG

rHPDHG

A factor of 2
o4 —02 00 02 Y]

27

Complexity
000000

Restarted reflected Halpern PDHG (r*HPDHG)

(onmc + arm)
PDHG + sharp

0 ((HAII) log 1)

U

(" oepre)
rHPDHG

0] (@ log %)

O

r’HPDHG

A factor of 2

—

Reflected Halpern PDHG

7 = k+1(2PDHG(K —

+2°
@ Take a more aggresive step

@ Improve a factor of 2 theoretically

28

Complexity
000000

Restarted reflected Halpern PDHG (r*HPDHG)

(onmc + arm)
PDHG + sharp

0 ((HAII) log 1)

U

(" oepre)
rHPDHG

0] (@ log %)

O

r’HPDHG

A factor of 2

—

Reflected Halpern PDHG

7 = k+1(2PDHG(K —

N

|
k 0
)t

@ Take a more aggresive step
@ Improve a factor of 2 theoretically

z0e

ke

28

Complexity
000000

Restarted reflected Halpern PDHG (r*HPDHG)

(onmc + arm)
PDHG + sharp

0 ((HAII) log 1)

U

(" oepre)
rHPDHG

0] (@ log %)

O

r’HPDHG

A factor of 2

—

Reflected Halpern PDHG

7 = k+1(2PDHG(K —

N

|
k 0
)t

@ Take a more aggresive step
@ Improve a factor of 2 theoretically

z0e

zke

PDHG(z*)
[}

28

Complexity
000000

Restarted reflected Halpern PDHG (r*HPDHG)

PDHG Reflected Halpern PDHG

o (1Al
L ZH = i+1(2PDHG() —zZK+ P ! 5 0
@ +

SRR .
PDHG + sharp @ Take a more aggresive step

N

0 ((”A”) log =) @ Improve a factor of 2 theoretically
- 7J

£ Z0e

(" oepre)
rHPDHG

0] (@ log %)

O

r’HPDHG

z"® - PDHG(z¥)

2PDHG(z)-Z
A factor of 2
— 28

Complexity
000000

Restarted reflected Halpern PDHG (r*HPDHG)

(onmc + arm)
PDHG + sharp

0 ((HAII) log 1)

U

(" oepre)
rHPDHG

0] (@ log %)

O

r’HPDHG

A factor of 2

—

Reflected Halpern PDHG

7 = k+1(2PDHG(K —

N

|
k 0
)t

@ Take a more aggresive step
@ Improve a factor of 2 theoretically

Z0e

ke

""°.,zk+1
®
2PDHG(z)-Z

28

SDP

QP
©0000000 0000

Quadratic Programming

Mostly based on

@ H Lu, J Yang (2023b) “A Practical and Optimal First-Order Method for
Large-Scale Convex Quadratic Programming’”.

29

QP
0®000000

Quadratic Programming

@ QP (primal-dual form):

1
minmax L(x,y) == =x' Qx+c'x—y b+ y Ax
x y>0 2

@ Major Solvers for QP

Solver ‘ Gurobi MOSEK SCS/OSQP PDLP
Method ‘ Simplex/IPM IPM ADMM? PDHG

@ Major algorithms:

o Simplex Methods
o Interior-Point Methods (IPM)
o First-Order Methods (FOM)

o Alternating Direction Method of Multipliers (ADMM)
o Primal-Dual Hybrid Gradient (PDHG)

1Support direct/indirect linear solvers 30

QP
00®00000

Two Extremes of QP

Quadratic Programming
il
min EXTQX +c'x

st. Ax< b

31

QP
00®00000

Two Extremes of QP

Quadratic Programming

1
min EXT Qx +c'x

st. Ax< b
Linear Programming Unconstrained QP
T |
VIR o min leQx+ cx
st. Ax<b 2

31

QP
00®00000

Two Extremes of QP

Quadratic Programming

1
min EXT Qx +c'x

st. Ax<b
Linear Programming Unconstrained QP
T |
VIR o min leQx+ cx
st. Ax<b 2
restart momentum

31

QP
00®00000

Two Extremes of QP

Quadratic Programming

1
min EXT Qx +c'x

st. Ax<b
Linear Programming Unconstrained QP
T |
VIR o min leQx+ cx
st. Ax<b 2
restart momentum

@ Optimal FOM should combine restart and momentum 31

QP
00080000

Two-Loop Restarted Accelerated PDHG

Algorithm: Restarted Accelerated PDHG

Input: Initial point (x%0, y90), parameters {(Bt, 0¢, ¢, 7¢) };

repeat
initialize the inner loop. inner loop counter t < 0O;
repeat
Xl (1= B h)rmE + B Ikt

YL Projam {y™ + Te(A(Be(xt — xmt=1) £ x0t) — b))
xmtt+l — xmt ﬂt(QX;g +c+ ATyn,tH);
)—<n,t+1 — (1 _ ﬂ;l))—(n,t + B;lxn,t+l;
PRt (L= Byt 4 BTy
until a restart condition holds;
restart the outer loop. (x™+1:0,yn+1.0) < (xmt gmt) n+« n41;
until (x™9, y™%) converges;
Output: (x™0, y™0).

@ 3 =1+ t/2is the momentum parameter, 6, = t/(t + 1) is the
over-relaxation parameter, 7; and 7 are the primal and dual step-sizes
@ Sublinear rate of accelerated PDHG was studied in [Chen et al., 2014]
32

QP
00008000

Numerical Experiment

Solvers:
e PDQP: CPU / GPU, written in Julia
@ SCS: CPU-direct / CPU-indirect / GPU, written in C
@ OSQP: CPU, written in C

Datasets:
@ Convex QP instances from QPLIB (33 “tiny” instances in total)

@ 063 synthetic instances generated from the code of OSQP paper

Termination (1h time limit):
@ PDQP has a nearly identical termination criteria as SCS
@ OSQP has a much looser criteria by neglecting primal-dual gap and

using £ norm 33

QP
00000800

Convex QP, Large Instances

@ Seven synthetic classes of convex QP problems from OSQP paper

@ Small (300k nnz), medium (3m nnz), large (30m nnz)

Small (21) Medium (21) Large (21) Total (63)
Count Time Count Time Count Time Count Time
PDQP (GPU) 21 1.20 21 1.94 21 6.13 63 2.92
PDQP (CPU) 21 3.01 21 27.53 18 359.31 60 46.49
SCS (GPU) 21 247 21 10.02 21 68.54 63 16.97

SCS (CPU-indirect) 21 9.39 21 81.86 15 700.88 57 98.18
SCS (CPU-direct) 21 1.06 21 10.19 21 133.52 63 21.76
OSQP (CPU) 21 1.11 21 11.80 21 170.71 63 25.24

Table 7: Solve time in seconds and SGM10 of different solvers on instances of with tolerance 1073.

Small (21) Medium (21) Large (21) Total (63)
Count Time Count Time Count Time Count Time

PDQP (GPU) 21 2.08 21 3.40 21 12.17 63 5.31
PDQP (CPU) 21 5.55 21 54.18 17 647.42 59 76.89
SCS (GPU) 21 5.69 21 24.38 18 196.75 60 38.14

SCS (CPU-indirect) 21 23.90 20 267.27 12 1593.95 53 237.04
SCS (CPU-direct) 21 3.09 21 30.25 20 395.85 62 49.79
OSQP (CPU) 21 3.31 21 30.70 21 375.24 63 49.32

Table 8: Solve time in seconds and SGM10 of different solvers on instances of with tolerance 10~5. 34

QP
00000080

Convergence Guarantee (Upper Bound)

Theorem (informal) [Lu-Yang, 2023b]: Convergence Rate of Restarted
Accelerated PDHG

Consider QP in primal-dual form:

1
minmax L(x,y):==x"Qx+c' x—y b+y Ax.
x y>0 2

Then restarted accelerated PDHG finds a solution z with dist(z, Z*) < e

within
(0] (max{ M, w} log 1)
ae oo €

ae > 0 is the quadratic growth constant of the smoothed gap in QP

iterations.

@ LP: a¢ recovers the sharpness constant of LP

@ Unconstrained QP: o recovers the minimum positive singular value
of the quadratic term 35

QP
00000000

Convergence Guarantee (Lower Bound)

Restarted accelerated PDHG achieves optimal linear rate under LP and
unconstrained QP [Applegate-Hinder-L-Lubin, 2021], [Nesterov, 1983]

Problem: LP Unconstrained QP
Upper bound: O (“f‘x”z log %) 0 (U'L_Q(”é) log %)
Lower bound: (Hilh log %) Q (Ull_Q(”é) log %)

@ « is the sharpness constant of LP

@ oF

orn(Q) is the minimum positive singular value of Q

36

SDP
€000

Semidefinite Programming

37

SDP: MaxCut

We are building up a new GPU-based SDP solver
@ The methodology is based on an augmented Lagrangian method

@ The numerical performance is suprisingly promising (see the next
two slides)

@ If you have any large-scale SDP problems to be solved, please feel
free to contact us!

38

SDP: MaxCut

instance dimension time instance dimension time
NACA0015 1039183 11.485 hugetric-00000 5824554 77.006
delaunay n20 1048576 7.333 hugetric-00010 6592765 79.448
kron_g500-logn20 1048576 131.911 italy_osm 6686493 40.709
rggn 2.20_s0 1048576 9.888 adaptive 6815744 96.847
belgium osm 1441295 8.283 hugetric-00020 7122792 83.734
delaunay n21 2097152 15.262 great-britain osm 7733822 61.270
kron_g500-1ogn21 2097152 335.199 delaunay n23 8388608 67.985
rggn 2 21.s0 2097152 21.679 rggn 2 23.s0 8388608 164.510
packing-500x100x100-b050 2145852 26.731 germany_osm 11548845 94.783
netherlands_osm 2216688 12.081 asia_osm 11950757 108.128
M6 3501776 46.567 hugetrace-00010 12057441 186.480
333SP 3712815 40.248 road central 14081816 174.989
AS365 3799275 49.985 hugetrace-00020 16002413 314.768
venturilevel3 4026819 41.529 delaunay.n24 16777216 189.024
NLR 4163763 51.739 rggn 224 s0 16777216 412.733
delaunay n22 4194304 33.287 hugebubbles-00000 18318143 387.761
rggn_2 22.s0 4194304 47.507 hugebubbles-00010 19458087 280.580
hugetrace-00000 4588484 50.669 hugebubbles-00020 21198119 308.113
channel-500x100x100-b050 4802000 80.858 road usa 23947347 308.473

Table 1: Performance of ALORA on MaxCut instances. Solve time in seconds.

39

SDP: matrix completion

r=3 r=>5
n m time n m time

10000 828659 0.379 10000 2300917 0.504

20000 1782453 0.726 20000 4952616 0.969
50000 4868248 1.409 50000 13522024 3.025
100000 10361604 2.944 || 100000 28777073 6.762
200000 21961921 5.511 || 200000 61013229 14.786
350000 40223331 12.759 || 350000 111700922 28.282

Table 2: Performance of ALORA on matrix completion with varying r, n, and m. Solve time in seconds.

40

SDP MP + DL

®000000

MPAX: Mathematical Programming
in JAX

Mostly based on

@ H Lu, Z Peng, J Yang (2024), “MPAX: Mathematical Programming in
JAX".

@ GitHub Repository: https://github.com/MIT-Lu-Lab/mpax

41

https://github.com/MIT-Lu-Lab/mpax

MPAX: Math Programming in JAX

| 2
A X | A

MPAX (Math Programming in JAX) is a hardware-accelerated, differentiable,
batchable, and distributable solver for mathematical programming in JAX:

@ Hardware-accelerated: executes on multiple architectures including
CPUs, GPUs and TPUs

@ Differentiable: easily computes derivatives of solutions with respect to
inputs through implicit or unrolled differentiation

@ Batchable: solves multiple problem instances simultaneously

@ Distributed: executes distributedly across multiple devices, such as

multiple GPUs
42

MP + DL

[e]e] le]o]e]e)

Example application: end-to-end decision making

Neural Network Optimization
S ——
min f(zy)
st. (zy) =
Hzy) <0

—

Backpropagation

@ Rather than the traditional predict-then-optimize paradigm,
end-to-end decision making optimizes jointly the prediction and
optimization

@ This is an actively studied research area [Amos et al., 2017]

@ LP layer can serve as loss functions, enforce constraints, make
decisions, etc

@ Applications in robotics, control, reinforcement learning, video

games, Al for science, etc 43

Differentiable layer

Instance Solver
8 A min ¢’z . Find 2*(6) s.t.
N (bre) sTt. Ax =0b KKT(z%6) =0

L J

Dy[2*(0)]

The key is to efficiently compute or approximate Dy[z*(6)]
@ Approximated differentiation
e Smart Predict-then-Optimize loss
o Perturbed Fenchel-Young loss
o Auto-differentiation
o The high-level idea is to unroll the PDLP solver and compute
the gradient via the chain rule 44

Task: find the shortest path between the top left and the bottom right vertices
given the Warcraft map.

Map Vertex weights Shortest path

PI

End-to-end predict-then-optimize
@ Use the first five layers of ResNet18 to predict the costs for each vertice.
@ Solve the LP to find the shortest path.

@ Compute the Smart-Predict-then-Optimize+ loss and backpropagate to
update the weights.

45

MPAX versus PyEPO (Gurobi)

Experiment details
@ Training: 10,000 samples, batch size = 70, epochs = 10.
@ Gurobi runs on CPU with 16 cores and 256GB of memory.
@ PyTorch, FLAX, and MPAX run on A100 GPU with 80GB memory.

Training time per epoch

Methods Configuration

k=12 k=18 k=24 k=30
tol=1e-2 17.56 31.86 55 94.39
single precision tol=1e-3 24.83 44.98 78.72 130.8
FLAX+MPAX tol=led4 | 3337 5585 9956 17076
double precision tol=1e-6 32.07 71.17 127.99 210.44

Process=1 178.08 427.27 792.85 1273.24

Method—automatic Process=4 80.74 226.18 513.78 1034.65

Process=8 40.16 108 245.8 480.1
PyEPO Process=16 27.21 70.82 159.25 317.86
(PyTorch-+Gurobi) Process=1 202.62 474.67 856.1 1383.03
Method=barrier Process=4 85.48 237.69 538.62 1067.9
(crossover disabled) Process=8 42.65 115.89 261.95 506.06
Process=16 29.97 o 170.05 337.95

k denotes the number of rows and columns in the map.

46

Training loss with different tolerances

Training Loss for 12x12 maps

Training Loss for 18x18 maps

3 Methods
10 4 —— MPAX (tol=1e-02, single precision)
~—— MPAX (tol=1e-04, single precision) 10° 4
—— MPAX (tol=1e-06, double precision)
102 | —— PyEPO (Barrier without crossover)

Loss

Methods
—— MPAX (tol=1e-02, single precision)
~—— MPAX (tol=1e-04, single precision)
—— MPAX (tol=1e-06, double precision)
—— PYEPO (Barrier without crossover)

0 200 400 600 800 1000 1200 1400 0
Training Steps

Training Loss for 24x24 maps

200 400 600 800 1000 1200 1400

Training Steps
Training Loss for 30x30 maps

104 "
Methods 10%4 Methods
—— MPAX (tol=1e-02, single precision) —— MPAX (tol=1e-02, single precision)
—— MPAX (tol=1e-04, single precision) ~—— MPAX (tol=1e-04, single precision)
3]
10 —— MPAX (tol=1e-06, double precision) 10° 4 —— MPAX (tol=1e-06, double precision)
@ —— PyEPO (Barrier without crossover) @ —— PyEPO (Barrier without crossover)
a a
S S

0 200 400 600 800 1000 1200 1400 0
Training Steps

@ The quality of 1072 accuracy solutions is

200 400 600 800 1000 1200 1400

Training Steps

enough for this application.

47

Discussion
o

Discussions

cuPDLP demonstrates the power of GPU in solving LPs
@ |t demonstrates an alternative, not a substitute
@ Better tuning and implementation led to 3-4 times further speedup
Is PDHG/PDLP the first-order method for LP?
@ Unlikely, but it is the best among what we tried
A paradigm shift from CPU to GPU?
@ Likely, in the next decade
Many future directions to be explored:
@ Other optimization problems, SOCP? NLP? MIP?
@ Multiple GPUs implementation

Thank you!

48

Additional Slides

49

Why 2xk*1 — xk in PDHG (informal)?

Denote z = (x,y), and F(z) = [V«L(x,y), =V, L(x,y)].

50

Why 2xk*1 — xk in PDHG (informal)?

Denote z = (x,y), and F(z) = [V«L(x,y),—V,L(x,y)]. Then we have
(GDA) : zK1 = 2k —pF(Z¥)

(PPM) : 251 = 2k — pF(ZFh)

@ Implicit algorithm (PPM) is more stable than explicit algorithm
(GDA) due to a high-order effect [L, 2022]

50

Why 2x%*1 — xk in PDHG (informal)?

Denote z = (x,y), and F(z) = [V«L(x,y),—V,L(x,y)]. Then we have
(GDA) : 21 = Zk — pF(ZF)
(PPM) : 251 = 2k — pF(ZFh)

@ Implicit algorithm (PPM) is more stable than explicit algorithm
(GDA) due to a high-order effect [L, 2022]

It turns out we can rewrite the update of PDHG as

(PDHG) : K1 = 2K — pT1F(Z4) |

e p [AAT
where = A %I

@ [Lu-Yang, 2023d] presents a unified and simplified convergence

analysis of PPM, PDHG and ADMM
50

Trajectory-based Analysis

Mostly based on

@ H Lu, J Yang (2023c) “On the Geometry and Refined Rate of
Primal-Dual Hybrid Gradient for Linear Programming”.

@ H Lu, J Yang (2024a) “Restarted Halpern PDHG for Linear
Programming”.

51

Typical Behaviors of PDHG for LP

IIMIWIII\IIMMHU

|y Hb“lll“M”‘(l Iy tll’\l B ll

bbbbbb

tttttttttt

nnnnn

nnnnnnn

I“”‘m”

8
g

I I w

wwwwwwwwww

ssssssssssss

@ There are two stages of convergence

ssssss
\\\\\\\\\\

@ Slow initial convergence, then fast linear convergence 52

IIMIWIII\IIMMHU

|y Hb“lll“M”‘(l Iy tll’\l B ll

bbbbbb

wwwwwwwwww

nnnnn

nnnnnnn

I“”‘m”

8
[

I Il UI

‘‘‘‘‘‘‘‘‘‘

pppppppppppp

ssssss
\\\\\\\\\

@ What are the geometric driving forces of the two stages?

@ Is it possible to derive a refined convergence complexity?

53

A Simple yet Representative Example

Consider a class of 2-D dual LP with
parameter (k,d): max, b'y, st. ATy <c

max y»
S.t.ylz—]. T
<l K| T
) s AN
i+-y<1
K
1 0
-n+-y»<1
K
2<k—906
71,

@ k controls the condition number of the
matrix A

@ J controls closeness to degeneracy -

A Simple yet Representative Example

(k,0)=(1,1)
0 (k,6)=(0.1,1)
wr (k,6)=(1,0.001)
(k,6)=(0.1,0.001)
)

©

=3

=]

@

o

L

¥

10710 F
0 1000 2000 3000 4000

iterations

@ § small: slow first stage

@ x small: slow second stage
55

What is going on in the two stages? (Informal)

Stage 1: Slow initial convergence
@ This is the process to identify active basis set S such that x¢ > 0

@ Driving force of this stage is closeness to degeneracy (i.e., ¢)

56

What is going on in the two stages? (Informal)

Stage 1: Slow initial convergence
@ This is the process to identify active basis set S such that x¢ > 0
@ Driving force of this stage is closeness to degeneracy (i.e., ¢)
Stage 2: “Fast” eventual convergence
@ Once active set is fixed, the dynamic has faster linear convergence

@ Driving force of this stage is condition number of matrix As (i.e.,
[Asll/as)
° as~ol (As)> a

min

56

Refined Complexity (Informal)

Theorem [Lu-Yang, 2024a]: Two-Stage Convergence of r?HPDHG for LP
Consider r2HPDHG for solving LP, then we have

o (Finite time identification) r>HPDHG will identify the
non-degenerate active variables in

kZiﬂzO(%)

iterations.

57

Refined Complexity (Informal)

Theorem [Lu-Yang, 2024a]: Two-Stage Convergence of r?HPDHG for LP
Consider r2HPDHG for solving LP, then we have

o (Finite time identification) r>HPDHG will identify the
non-degenerate active variables in

kZiﬂzO(%)

iterations. .
@ (Linear convergence after identification) After identification,

r?HPDHG will compute a solution z such that KKT(z) < € in

o(ln(2)

iterations.

57

Refined Complexity (Informal)

Theorem [Lu-Yang, 2024a]: Two-Stage Convergence of r?HPDHG for LP
Consider r2HPDHG for solving LP, then we have

o (Finite time identification) r>HPDHG will identify the
non-degenerate active variables in

kZiﬂzO(%)

iterations. .
@ (Linear convergence after identification) After identification,

r?HPDHG will compute a solution z such that KKT(z) < € in

o(ln(2)

@ The fundamental difficulty of the analysis comes from “degeneracy”
of the LP 57

iterations.

	Introduction
	

	Algorithm
	

	Computation
	

	Complexity
	

	QP
	

	SDP
	

	MP + DL
	

	Discussion
	

	
	

