
1

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

GPU-Accelerated Linear Programming and
Beyond

Haihao Lu

MIT

MIP Workshop, University of Minnesota

June, 2025

2

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Jinwen Yang

Zedong Peng

Acknowledgment of my early

collaboration with Google

Mostly based on a series of papers:

H Lu, J Yang (2023a) “cuPDLP.jl: A GPU
Implementation of Restarted Primal-Dual Hybrid
Gradient for Linear Programming in Julia”.

H Lu, J Yang (2023b) “A Practical and Optimal
First-Order Method for Large-Scale Convex Quadratic
Programming”.

H Lu, J Yang (2023c) “On the Geometry and Refined
Rate of Primal-Dual Hybrid Gradient for Linear
Programming”.

H Lu, J Yang (2023d) “On a unified and simplified
proof for the ergodic convergence rates of PPM,
PDHG and ADMM”.

H Lu, J Yang (2024) “Restarted Halpern PDHG for
Linear Programming”.

H Lu, Z Peng, J Yang (2024) “MPAX: Mathematical
programming in JAX”.

......

3

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Motivation

Machine learning infrastructure has
grown like crazy in the last 10 years

Hardware: GPUs and TPUs

Software: first-order method,
Tensorflow and PyTorch

The scale of mathematical programming
we can handle is arguably stuck

Hardware: shared memory CPU

Software: simplex/barrier method,
Gurobi

Motivation: Can we use GPU and FOMs to speed and scale up
mathematical programming?

3

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Motivation

Machine learning infrastructure has
grown like crazy in the last 10 years

Hardware: GPUs and TPUs

Software: first-order method,
Tensorflow and PyTorch

The scale of mathematical programming
we can handle is arguably stuck

Hardware: shared memory CPU

Software: simplex/barrier method,
Gurobi

Motivation: Can we use GPU and FOMs to speed and scale up
mathematical programming?

3

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Motivation

Machine learning infrastructure has
grown like crazy in the last 10 years

Hardware: GPUs and TPUs

Software: first-order method,
Tensorflow and PyTorch

The scale of mathematical programming
we can handle is arguably stuck

Hardware: shared memory CPU

Software: simplex/barrier method,
Gurobi

Motivation: Can we use GPU and FOMs to speed and scale up
mathematical programming?

4

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Comparison of CPU and GPU

CPU commonly has two to 64 cores, while GPU commonly has
thousands or more cores

CPU is better at serial tasks, and GPU is better at parallel tasks

5

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

What numerical operations are GPU good at?

For large-scale mathematical programming problems:

Traditionally, it was believed that GPU is not suitable for solving
sparse linear systems.

NVIDIA released cuDSS, which makes sparse solving possible on
GPUs, but the speedup is not the scale of SpMV.

6

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Algorithm and Implementation

7

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Primal-Dual Hybrid Gradient (PDHG)

LP (in standard form):

min c⊤x

s.t.Ax = b, x ≥ 0

LP (primal-dual form):

min
x≥0

max
y

c⊤x + y⊤b − y⊤Ax

Primal-Dual Hybrid Gradient (PDHG) [Chambolle and Pock 2011]

xk+1 = projRn
+
(xk + η(A⊤y − c))

yk+1 = yk − τ(A(2xk+1 − xk)− b)

η and τ are the primal and dual step-size, respectively

Cost per iteration is matrix vector multiplication

8

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Visualizing PDHG

PDHG iterates restricted in the primal (or dual) space look
mysterious

9

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Visualizing PDHG

PDHG iterates, in the primal-dual space, follow with “spiral rays”,
till the active basis changes

The spiral improves feasibility, and the ray improves the primal-dual
gap

10

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

PDLP(=Primal Dual Algorithms for LP)

On a benchmark set with 383 instances and 1 hour time limit

Method Solved to 10−4 (rela. err.) Solved to 10−8 (rela. err.)

PDHG (CPU) 40% 19%
PDLP (CPU) 97% 85%

Indeed PDHG itself does not work well. We propose many enhancements

Adaptive step sizes

Diagonal preconditioning

Infeasibility detection

Primal weight updates

Halpern iteration

Reflection

Restarts

Feasibility polishing

11

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

cuPDLP and r2HPDLP

Read

Preconditioning

Return

Restarted PDHG

Evaluate
progress metric

Solution

LP instance

Scaled LP

Solution

CPU

GPU

Infeasibility
detection

cuPDLP (≈ GPU-version of PDLP)

Avoid all serial steps of PDLP

All major steps are done on
GPU

Only two rounds of CPU-GPU
communication

Recently, we propose r2HPDLP
(restarted reflected Halpern version
of PDLP) with better theory and
practice

12

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Computation

Mostly based on

H Lu, J Yang (2023a) “cuPDLP.jl: A GPU Implementation of Restarted
Primal-Dual Hybrid Gradient for Linear Programming in Julia”.

H Lu, J Yang (2024) “Restarted Halpern PDHG for Linear
Programming”.

13

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Major Message

Major Message:

cuPDLP (GPU) is “on par” with state-of-the-art LP solvers

r2HPDLP overall has superior performance than cuPDLP

14

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Datasets

MIPLIB Relaxations (383 instances)

Small Medium Large
Number of nonzeros 100K - 1M 1M - 10M >10M
Number of instances 269 94 20

Table: Scales of instances in MIPLIB Relaxations

Experiment details

Gurobi runs on CPU with 16 cores and 160GB of memory,
crossover disabled
cuPDLP.jl/r2HPDLP runs on H100 GPU with 80GB memory

15

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

cuPDLP/r2HPDLP versus Gurobi, without presolve

Small (269)
(1-hour limit)

Medium (94)
(1-hour limit)

Large (20)
(5-hour limit)

Count Time Count Time Count Time
Primal simplex (Gurobi) 268 7.81 73 140.18 13 1180.42
Dual simplex (Gurobi) 267 5.75 87 45.49 13 973.96

Barrier (Gurobi) 268 2.91 86 37.95 13 576.57
cuPDLP 266 8.61 92 14.80 19 111.19
r2HPDHG 267 6.61 93 7.84 19 90.81

Table: Moderate accuracy Tol 10−4

Small (269)
(1-hour limit)

Medium (94)
(1-hour limit)

Large (20)
(5-hour limit)

Count Time Count Time Count Time
Primal simplex (Gurobi) 266 9.06 68 166.03 12 1578.04
Dual simplex (Gurobi) 265 7.14 84 60.97 11 1438.33

Barrier (Gurobi) 268 3.38 82 46.13 13 630.21
cuPDLP 261 23.47 86 40.69 16 421.40
r2HPDHG 260 19.13 87 28.35 16 229.47

Table: High accuracy Tol 10−8

16

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

cuPDLP/r2HPDLP versus Gurobi, with presolve

Small (269)
(1-hour limit)

Medium (94)
(1-hour limit)

Large (20)
(5-hour limit)

Count Time Count Time Count Time
Primal simplex (Gurobi) 269 5.67 71 121.23 19 297.59
Dual simplex (Gurobi) 268 4.17 86 37.56 19 179.49

Barrier (Gurobi) 269 1.21 94 15.32 20 30.70
cuPDLP 269 5.35 93 10.31 19 33.93
r2HPDHG 267 3.95 94 6.45 19 17.13

Table: Moderate accuracy Tol 10−4

Small (269)
(1-hour limit)

Medium (94)
(1-hour limit)

Large (20)
(5-hour limit)

Count Time Count Time Count Time
Primal simplex (Gurobi) 269 5.19 75 100.03 18 171.72
Dual simplex (Gurobi) 268 3.53 89 27.17 19 121.94

Barrier (Gurobi) 269 1.34 94 16.85 20 33.48
cuPDLP 264 17.53 90 30.05 19 81.07
r2HPDHG 261 15.24 90 21.67 19 56.19

Table: High accuracy Tol 10−8

17

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

cuPDLP versus PDLP, MIPLIB

Small (269)
(1-hour limit)

Medium (94)
(1-hour limit)

Large (20)
(5-hour limit)

Count Time Count Time Count Time
FirstOrderLp.jl 253 35.94 82 155.67 12 2002.21

PDLP (1 thread) 256 22.69 85 98.38 15 1622.91
PDLP (4 threads) 260 24.03 91 42.94 15 736.20
PDLP (16 threads) 238 104.72 84 142.79 15 946.24

cuPDLP 266 8.61 92 14.80 19 111.19
r2HPDHG 267 6.61 93 7.84 19 90.81

Table: Moderate accuracy Tol 10−4

Small (269)
(1-hour limit)

Medium (94)
(1-hour limit)

Large (20)
(5-hour limit)

Count Time Count Time Count Time
FirstOrderLp.jl 235 91.14 68 389.34 9 3552.50

PDLP (1 thread) 250 49.31 73 259.04 12 3818.42
PDLP (4 threads) 245 54.19 81 136.16 14 1789.54
PDLP (16 threads) 214 248.34 69 403.17 14 2475.57

cuPDLP 261 23.47 86 40.69 16 421.40
r2HPDHG 260 19.13 87 28.35 16 229.47

Table: High accuracy Tol 10−8

18

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Broader impact

19

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Benchmarks for optimization software (By Hans Mittelmann)

Figure: LPfeas Benchmark (find PD feasible point)

Figure: LPopt Benchmark (find optimal basic solution)

20

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Benchmarks for hard LP instances (By COPT)

On the ZIB03 instance

Solver Hardware Time to Optimality
Barrier Method (2009) CPU 4 months
COPT (2023) Modern CPU 16 hours
cuPDLP–C (2023) NVIDIA H100 GPU 15 minutes

Table: Hard LP instances solved more than 60 times faster with cuPDLP-C.

21

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Performance on large unit commitment instances (By ZIB)

22

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Complexity theory

Mostly based on

H Lu, J Yang (2024) “Restarted Halpern PDHG for Linear
Programming”.

23

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

KKT system of LP

Denote

K =

A 0
−A 0
0 −A⊤

−c⊤ b⊤

 and h =

b
−b
−c
0

Then Kz ≥ h is the KKT system of LP and solutions Z∗ = {z | Kz ≥ h}

Progress metric: KKT residual of standard LP

KKT(z) = ∥(h − Kz)+∥ =

∥∥∥∥∥∥
 Ax − b

(A⊤y − c)+

(c⊤x − b⊤y)+

∥∥∥∥∥∥
z = (x , y) with x ≥ 0

24

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Existing Results for PDHG on LP

Traditional convergence results for PDHG on LP are
mostly sublinear

PDHG finds a solution z s.t. KKT(z) ≤ ϵ within
O(1/ϵ) iterations

Many LP users require high accuracy solutions

We need linearly convergent algorithms

25

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Linear Convergence of PDHG for LP

Definition: Sharpness of the KKT System

α is the sharpness constant of the KKT system, if for any
z = (x , y), x ≥ 0,

αdist(z ,Z∗) ≤ ∥(h − Kz)+∥ .

Theorem (informal) [Lu-Yang, 2022]: Linear convergence of
PDHG

Consider LP in primal-dual form:
minx≥0 maxy c⊤x + y⊤b − y⊤Ax . Then PDHG finds a
solution z such that KKT(z) ≤ ϵ within

O

((
∥A∥
α

)2

log

(
1

ϵ

))
iterations.

25

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Linear Convergence of PDHG for LP

Definition: Sharpness of the KKT System

α is the sharpness constant of the KKT system, if for any
z = (x , y), x ≥ 0,

αdist(z ,Z∗) ≤ ∥(h − Kz)+∥ .

Theorem (informal) [Lu-Yang, 2022]: Linear convergence of
PDHG

Consider LP in primal-dual form:
minx≥0 maxy c⊤x + y⊤b − y⊤Ax . Then PDHG finds a
solution z such that KKT(z) ≤ ϵ within

O

((
∥A∥
α

)2

log

(
1

ϵ

))
iterations.

26

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Halpern PDHG (HPDHG)

Halpern PDHG (HPDHG)

z t+1 ← t + 1

t + 2
PDHG(z t) +

1

t + 2
z0

z0

z1

z2

PDHG(z2)

z3

26

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Halpern PDHG (HPDHG)

Halpern PDHG (HPDHG)

z t+1 ← t + 1

t + 2
PDHG(z t) +

1

t + 2
z0

z0

z1

z2

PDHG(z2)

z3

26

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Halpern PDHG (HPDHG)

Halpern PDHG (HPDHG)

z t+1 ← t + 1

t + 2
PDHG(z t) +

1

t + 2
z0

z0

PDHG(z0)

z1

z2

PDHG(z2)

z3

26

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Halpern PDHG (HPDHG)

Halpern PDHG (HPDHG)

z t+1 ← t + 1

t + 2
PDHG(z t) +

1

t + 2
z0

z0

PDHG(z0)
z1

z2

PDHG(z2)

z3

26

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Halpern PDHG (HPDHG)

Halpern PDHG (HPDHG)

z t+1 ← t + 1

t + 2
PDHG(z t) +

1

t + 2
z0

z0

z1

PDHG(z1)

z2

PDHG(z2)

z3

26

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Halpern PDHG (HPDHG)

Halpern PDHG (HPDHG)

z t+1 ← t + 1

t + 2
PDHG(z t) +

1

t + 2
z0

z0

z1

PDHG(z1)

z2

PDHG(z2)

z3

26

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Halpern PDHG (HPDHG)

Halpern PDHG (HPDHG)

z t+1 ← t + 1

t + 2
PDHG(z t) +

1

t + 2
z0

z0

z1

z2

PDHG(z2)

z3

26

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Halpern PDHG (HPDHG)

Halpern PDHG (HPDHG)

z t+1 ← t + 1

t + 2
PDHG(z t) +

1

t + 2
z0

z0

z1

z2

PDHG(z2)

z3

27

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Restarted Halpern PDHG (rHPDHG)

Restarted Halpern PDHG (rHPDHG)

initialize the inner loop. inner loop counter t ← 0 ;
repeat

zn,t+1 ← t+1
t+2PDHG(zn,t) + 1

t+2z
n,0;

until ∥zn,t+1 − PDHG(zn,t+1)∥ ≤ ∥zn,0 − PDHG(zn,0)∥/2;
restart the outer loop. zn+1,0 ← PDHG(zn,t+1);

28

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Restarted reflected Halpern PDHG (r2HPDHG)

Reflected Halpern PDHG

zk+1 =
k + 1

k + 2
(2PDHG(zk)− zk) +

1

k + 2
z0

Take a more aggresive step

Improve a factor of 2 theoretically

z0

zk

2PDHG(zk)-zk
zk+1

28

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Restarted reflected Halpern PDHG (r2HPDHG)

Reflected Halpern PDHG

zk+1 =
k + 1

k + 2
(2PDHG(zk)− zk) +

1

k + 2
z0

Take a more aggresive step

Improve a factor of 2 theoretically

z0

zk

2PDHG(zk)-zk
zk+1

28

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Restarted reflected Halpern PDHG (r2HPDHG)

Reflected Halpern PDHG

zk+1 =
k + 1

k + 2
(2PDHG(zk)− zk) +

1

k + 2
z0

Take a more aggresive step

Improve a factor of 2 theoretically

z0

zk PDHG(zk)

2PDHG(zk)-zk
zk+1

28

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Restarted reflected Halpern PDHG (r2HPDHG)

Reflected Halpern PDHG

zk+1 =
k + 1

k + 2
(2PDHG(zk)− zk) +

1

k + 2
z0

Take a more aggresive step

Improve a factor of 2 theoretically

z0

zk PDHG(zk)

2PDHG(zk)-zk

zk+1

28

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Restarted reflected Halpern PDHG (r2HPDHG)

Reflected Halpern PDHG

zk+1 =
k + 1

k + 2
(2PDHG(zk)− zk) +

1

k + 2
z0

Take a more aggresive step

Improve a factor of 2 theoretically

z0

zk

2PDHG(zk)-zk
zk+1

29

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Quadratic Programming

Mostly based on

H Lu, J Yang (2023b) “A Practical and Optimal First-Order Method for
Large-Scale Convex Quadratic Programming”.

30

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Quadratic Programming

QP (primal-dual form):

min
x

max
y≥0

L(x , y) :=
1

2
x⊤Qx + c⊤x − y⊤b + y⊤Ax

Major Solvers for QP

Solver Gurobi MOSEK SCS/OSQP PDLP

Method Simplex/IPM IPM ADMM1 PDHG

Major algorithms:

Simplex Methods

Interior-Point Methods (IPM)
First-Order Methods (FOM)

Alternating Direction Method of Multipliers (ADMM)
Primal-Dual Hybrid Gradient (PDHG)

1Support direct/indirect linear solvers

31

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Two Extremes of QP

Optimal FOM should combine restart and momentum

31

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Two Extremes of QP

Optimal FOM should combine restart and momentum

31

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Two Extremes of QP

Optimal FOM should combine restart and momentum

31

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Two Extremes of QP

Optimal FOM should combine restart and momentum

32

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Two-Loop Restarted Accelerated PDHG

Algorithm: Restarted Accelerated PDHG
Input: Initial point (x0,0, y0,0), parameters {(βt , θt , ηt , τt)};
repeat

initialize the inner loop. inner loop counter t ← 0;
repeat

xn,tmd ← (1− β−1
t)x̄n,t + β−1

t xn,t ;

yn,t+1 ← ProjRm
+

{
yn,t + τt(A(θt(xn,t − xn,t−1) + xn,t)− b)

}
;

xn,t+1 ← xn,t − ηt(Qxn,tmd + c + A⊤yn,t+1);

x̄n,t+1 ← (1− β−1
t)x̄n,t + β−1

t xn,t+1;

ȳn,t+1 ← (1− β−1
t)ȳn,t + β−1

t yn,t+1;

until a restart condition holds;

restart the outer loop. (xn+1,0, yn+1,0)← (x̄n,t , ȳn,t), n← n + 1;

until (xn,0, yn,0) converges;

Output: (xn,0, yn,0).

βt = 1 + t/2 is the momentum parameter, θt = t/(t + 1) is the
over-relaxation parameter, ηt and τt are the primal and dual step-sizes

Sublinear rate of accelerated PDHG was studied in [Chen et al., 2014]

33

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Numerical Experiment

Solvers:

PDQP: CPU / GPU, written in Julia

SCS: CPU-direct / CPU-indirect / GPU, written in C

OSQP: CPU, written in C

Datasets:

Convex QP instances from QPLIB (33 “tiny” instances in total)

63 synthetic instances generated from the code of OSQP paper

Termination (1h time limit):

PDQP has a nearly identical termination criteria as SCS

OSQP has a much looser criteria by neglecting primal-dual gap and
using ℓ2 norm

34

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Convex QP, Large Instances

Seven synthetic classes of convex QP problems from OSQP paper

Small (300k nnz), medium (3m nnz), large (30m nnz)

35

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Convergence Guarantee (Upper Bound)

Theorem (informal) [Lu-Yang, 2023b]: Convergence Rate of Restarted
Accelerated PDHG

Consider QP in primal-dual form:

min
x

max
y≥0

L(x , y) :=
1

2
x⊤Qx + c⊤x − y⊤b + y⊤Ax .

Then restarted accelerated PDHG finds a solution z with dist(z ,Z∗) ≤ ϵ
within

O

(
max

{√
∥Q∥
αξ

,
∥A∥
αξ

}
log

1

ϵ

)
iterations.

αξ > 0 is the quadratic growth constant of the smoothed gap in QP

LP: αξ recovers the sharpness constant of LP

Unconstrained QP: αξ recovers the minimum positive singular value
of the quadratic term

36

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Convergence Guarantee (Lower Bound)

Restarted accelerated PDHG achieves optimal linear rate under LP and
unconstrained QP [Applegate-Hinder-L-Lubin, 2021], [Nesterov, 1983]

Problem: LP Unconstrained QP

Upper bound: O
(

∥A∥2

α log 1
ϵ

)
O
(√

∥Q∥2

σ+
min(Q)

log 1
ϵ

)
Lower bound: Ω

(
∥A∥2

α log 1
ϵ

)
Ω
(√

∥Q∥2

σ+
min(Q)

log 1
ϵ

)
α is the sharpness constant of LP

σ+
min(Q) is the minimum positive singular value of Q

37

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Semidefinite Programming

38

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

SDP: MaxCut

We are building up a new GPU-based SDP solver

The methodology is based on an augmented Lagrangian method

The numerical performance is suprisingly promising (see the next
two slides)

If you have any large-scale SDP problems to be solved, please feel
free to contact us!

39

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

SDP: MaxCut

40

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

SDP: matrix completion

41

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

MPAX: Mathematical Programming
in JAX

Mostly based on

H Lu, Z Peng, J Yang (2024), “MPAX: Mathematical Programming in
JAX”.

GitHub Repository: https://github.com/MIT-Lu-Lab/mpax

https://github.com/MIT-Lu-Lab/mpax

42

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

MPAX: Math Programming in JAX

MPAX (Math Programming in JAX) is a hardware-accelerated, differentiable,
batchable, and distributable solver for mathematical programming in JAX:

Hardware-accelerated: executes on multiple architectures including
CPUs, GPUs and TPUs

Differentiable: easily computes derivatives of solutions with respect to
inputs through implicit or unrolled differentiation

Batchable: solves multiple problem instances simultaneously

Distributed: executes distributedly across multiple devices, such as
multiple GPUs

43

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Example application: end-to-end decision making

Rather than the traditional predict-then-optimize paradigm,
end-to-end decision making optimizes jointly the prediction and
optimization

This is an actively studied research area [Amos et al., 2017]

LP layer can serve as loss functions, enforce constraints, make
decisions, etc

Applications in robotics, control, reinforcement learning, video
games, AI for science, etc

44

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Differentiable layer

The key is to efficiently compute or approximate Dθ[z
∗(θ)]

Approximated differentiation
Smart Predict-then-Optimize loss
Perturbed Fenchel-Young loss

Auto-differentiation
The high-level idea is to unroll the PDLP solver and compute
the gradient via the chain rule

45

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Warcraft Shortest Path

Task: find the shortest path between the top left and the bottom right vertices
given the Warcraft map.

0 20 40 60 80

0

20

40

60

80

Map

0 2 4 6 8 10

0

2

4

6

8

10

Vertex weights

0 2 4 6 8 10

0

2

4

6

8

10

Shortest path

End-to-end predict-then-optimize

Use the first five layers of ResNet18 to predict the costs for each vertice.

Solve the LP to find the shortest path.

Compute the Smart-Predict-then-Optimize+ loss and backpropagate to
update the weights.

46

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

MPAX versus PyEPO (Gurobi)

Experiment details

Training: 10,000 samples, batch size = 70, epochs = 10.

Gurobi runs on CPU with 16 cores and 256GB of memory.

PyTorch, FLAX, and MPAX run on A100 GPU with 80GB memory.

Methods Configuration
Training time per epoch

k=12 k=18 k=24 k=30

FLAX+MPAX
single precision

tol=1e-2 17.56 31.86 55 94.39
tol=1e-3 24.83 44.98 78.72 130.8
tol=1e-4 33.37 55.85 99.56 170.76

double precision tol=1e-6 32.07 71.17 127.99 210.44

PyEPO
(PyTorch+Gurobi)

Method=automatic

Process=1 178.08 427.27 792.85 1273.24
Process=4 80.74 226.18 513.78 1034.65
Process=8 40.16 108 245.8 480.1
Process=16 27.21 70.82 159.25 317.86

Method=barrier
(crossover disabled)

Process=1 202.62 474.67 856.1 1383.03
Process=4 85.48 237.69 538.62 1067.9
Process=8 42.65 115.89 261.95 506.06
Process=16 29.97 77.7 170.05 337.95

k denotes the number of rows and columns in the map.

47

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Training loss with different tolerances

0 200 400 600 800 1000 1200 1400
Training Steps

101

102

103

Lo
ss

Training Loss for 12x12 maps
Methods

MPAX (tol=1e-02, single precision)
MPAX (tol=1e-04, single precision)
MPAX (tol=1e-06, double precision)
PyEPO (Barrier without crossover)

0 200 400 600 800 1000 1200 1400
Training Steps

101

102

103

Lo
ss

Training Loss for 18x18 maps
Methods

MPAX (tol=1e-02, single precision)
MPAX (tol=1e-04, single precision)
MPAX (tol=1e-06, double precision)
PyEPO (Barrier without crossover)

0 200 400 600 800 1000 1200 1400
Training Steps

101

102

103

104

Lo
ss

Training Loss for 24x24 maps
Methods

MPAX (tol=1e-02, single precision)
MPAX (tol=1e-04, single precision)
MPAX (tol=1e-06, double precision)
PyEPO (Barrier without crossover)

0 200 400 600 800 1000 1200 1400
Training Steps

101

102

103

104

Lo
ss

Training Loss for 30x30 maps
Methods

MPAX (tol=1e-02, single precision)
MPAX (tol=1e-04, single precision)
MPAX (tol=1e-06, double precision)
PyEPO (Barrier without crossover)

The quality of 10−2 accuracy solutions is enough for this application.

48

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Discussions

cuPDLP demonstrates the power of GPU in solving LPs

It demonstrates an alternative, not a substitute

Better tuning and implementation led to 3-4 times further speedup

Is PDHG/PDLP the first-order method for LP?

Unlikely, but it is the best among what we tried

A paradigm shift from CPU to GPU?

Likely, in the next decade

Many future directions to be explored:

Other optimization problems, SOCP? NLP? MIP?

Multiple GPUs implementation

...

Thank you!

49

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Additional Slides

50

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Why 2xk+1 − xk in PDHG (informal)?

Denote z = (x , y), and F (z) = [∇xL(x , y),−∇yL(x , y)].

Then we have

(GDA) : zk+1 = zk − ηF (zk)

(PPM) : zk+1 = zk − ηF (zk+1)

Implicit algorithm (PPM) is more stable than explicit algorithm
(GDA) due to a high-order effect [L, 2022]

It turns out we can rewrite the update of PDHG as

(PDHG) : zk+1 = zk − P−1F (zk+1) ,

where P =

[
1
η I AT

A 1
η I

]
.

[Lu-Yang, 2023d] presents a unified and simplified convergence
analysis of PPM, PDHG and ADMM

50

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Why 2xk+1 − xk in PDHG (informal)?

Denote z = (x , y), and F (z) = [∇xL(x , y),−∇yL(x , y)]. Then we have

(GDA) : zk+1 = zk − ηF (zk)

(PPM) : zk+1 = zk − ηF (zk+1)

Implicit algorithm (PPM) is more stable than explicit algorithm
(GDA) due to a high-order effect [L, 2022]

It turns out we can rewrite the update of PDHG as

(PDHG) : zk+1 = zk − P−1F (zk+1) ,

where P =

[
1
η I AT

A 1
η I

]
.

[Lu-Yang, 2023d] presents a unified and simplified convergence
analysis of PPM, PDHG and ADMM

50

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Why 2xk+1 − xk in PDHG (informal)?

Denote z = (x , y), and F (z) = [∇xL(x , y),−∇yL(x , y)]. Then we have

(GDA) : zk+1 = zk − ηF (zk)

(PPM) : zk+1 = zk − ηF (zk+1)

Implicit algorithm (PPM) is more stable than explicit algorithm
(GDA) due to a high-order effect [L, 2022]

It turns out we can rewrite the update of PDHG as

(PDHG) : zk+1 = zk − P−1F (zk+1) ,

where P =

[
1
η I AT

A 1
η I

]
.

[Lu-Yang, 2023d] presents a unified and simplified convergence
analysis of PPM, PDHG and ADMM

51

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Trajectory-based Analysis

Mostly based on

H Lu, J Yang (2023c) “On the Geometry and Refined Rate of
Primal-Dual Hybrid Gradient for Linear Programming”.

H Lu, J Yang (2024a) “Restarted Halpern PDHG for Linear
Programming”.

52

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Typical Behaviors of PDHG for LP

There are two stages of convergence

Slow initial convergence, then fast linear convergence

53

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Two Questions

What are the geometric driving forces of the two stages?

Is it possible to derive a refined convergence complexity?

54

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

A Simple yet Representative Example

Consider a class of 2-D dual LP with
parameter (κ, δ): maxy b⊤y , s.t. A⊤y ≤ c

max y2

s.t. y1 ≥ −1
y1 ≤ 1

y1 +
1

κ
y2 ≤ 1

− y1 +
1

κ
y2 ≤ 1

y2 ≤ κ− δ

κ controls the condition number of the
matrix A

δ controls closeness to degeneracy

55

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

A Simple yet Representative Example

δ small: slow first stage

κ small: slow second stage

56

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

What is going on in the two stages? (Informal)

Stage 1: Slow initial convergence

This is the process to identify active basis set S such that x∗S > 0

Driving force of this stage is closeness to degeneracy (i.e., δ)

Stage 2: “Fast” eventual convergence

Once active set is fixed, the dynamic has faster linear convergence

Driving force of this stage is condition number of matrix AS (i.e.,
∥AS∥/αS)

αS ≈ σ+
min(AS)≫ α

56

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

What is going on in the two stages? (Informal)

Stage 1: Slow initial convergence

This is the process to identify active basis set S such that x∗S > 0

Driving force of this stage is closeness to degeneracy (i.e., δ)

Stage 2: “Fast” eventual convergence

Once active set is fixed, the dynamic has faster linear convergence

Driving force of this stage is condition number of matrix AS (i.e.,
∥AS∥/αS)

αS ≈ σ+
min(AS)≫ α

57

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Refined Complexity (Informal)

Theorem [Lu-Yang, 2024a]: Two-Stage Convergence of r2HPDHG for LP

Consider r2HPDHG for solving LP, then we have

(Finite time identification) r2HPDHG will identify the
non-degenerate active variables in

k ≥ K := O
(
∥A∥/αS

δ

)
iterations.

(Linear convergence after identification) After identification,
r2HPDHG will compute a solution z such that KKT(z) ≤ ϵ in

O
(
||AS ||
αS

log

(
1

ϵ

))
.

iterations.

The fundamental difficulty of the analysis comes from “degeneracy”
of the LP

57

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Refined Complexity (Informal)

Theorem [Lu-Yang, 2024a]: Two-Stage Convergence of r2HPDHG for LP

Consider r2HPDHG for solving LP, then we have

(Finite time identification) r2HPDHG will identify the
non-degenerate active variables in

k ≥ K := O
(
∥A∥/αS

δ

)
iterations.
(Linear convergence after identification) After identification,
r2HPDHG will compute a solution z such that KKT(z) ≤ ϵ in

O
(
||AS ||
αS

log

(
1

ϵ

))
.

iterations.

The fundamental difficulty of the analysis comes from “degeneracy”
of the LP

57

Introduction Algorithm Computation Complexity QP SDP MP + DL Discussion

Refined Complexity (Informal)

Theorem [Lu-Yang, 2024a]: Two-Stage Convergence of r2HPDHG for LP

Consider r2HPDHG for solving LP, then we have

(Finite time identification) r2HPDHG will identify the
non-degenerate active variables in

k ≥ K := O
(
∥A∥/αS

δ

)
iterations.
(Linear convergence after identification) After identification,
r2HPDHG will compute a solution z such that KKT(z) ≤ ϵ in

O
(
||AS ||
αS

log

(
1

ϵ

))
.

iterations.

The fundamental difficulty of the analysis comes from “degeneracy”
of the LP

	Introduction
	

	Algorithm
	

	Computation
	

	Complexity
	

	QP
	

	SDP
	

	MP + DL
	

	Discussion
	

	
	

